

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ELINT SIGNAL PROCESSING USING CHOI-WILLIAMS
 DISTRIBUTION ON RECONFIGURABLE COMPUTERS

FOR DETECTION AND CLASSIFICATION OF LPI
EMITTERS

by

Teresa Lynn Odom Upperman

March 2008

 Thesis Advisor: Douglas J. Fouts
 Co-Advisor: Phillip E. Pace

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
ELINT Signal Processing Using Choi-Williams Distribution on Reconfigurable
Computers for Detection and Classification of LPI Emitters
6. AUTHOR(S) Teresa Lynn Odom Upperman

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency Office of Naval Research
Fort Meade, MD Arlington, VA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis documents the use of the SRC-6 Reconfigurable Computer for use in analyzing low probability of
intercept (LPI) signals using the Choi-Williams distribution. The SRC-6 is a reconfigurable computer manufactured
by SRC Computers, Inc. which allows the user to tailor both the software and the hardware to a specific task. This
increases the speed at which the task can be accomplished making it useful for applications in electronic intelligence
(ELINT). The Choi-Williams distribution is a mathematical technique that was first created using MATLAB and then
converted to C code for use on the SRC-6. The purpose of this study is to investigate the feasibility of using a
reconfigurable computer for ELINT applications and the timely detection and classification of LPI signals. This thesis
is part of a larger study to use reconfigurable computers for the autonomous detection and classification of LPI
signals.

15. NUMBER OF
PAGES

104

14. SUBJECT TERMS Choi-Williams Distribution, Reconfigurable Computer, Signal Processing.
MATLAB programming, C programming, Low Probability of Intercept (LPI), Radar detection, Radar
classification

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ELINT SIGNAL PROCESSING ON RECONFIGURABLE COMPUTERS FOR
DETECTION AND CLASSIFICATION OF LPI EMITTERS

Teresa L.O. Upperman

Civilian, Department of Defense
B.S., Valparaiso University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2008

Author: Teresa Lynn Odom Upperman

Approved by: Douglas J. Fouts
Thesis Advisor

Phillip E. Pace
Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis documents the use of the SRC-6 Reconfigurable Computer for use in

analyzing low probability of intercept (LPI) signals using the Choi-Williams distribution.

The SRC-6 is a reconfigurable computer manufactured by SRC Computers, Inc. which

allows the user to tailor both the software and the hardware to a specific task. This

increases the speed at which the task can be accomplished making it useful for

applications in electronic intelligence (ELINT). The Choi-Williams distribution is a

mathematical technique that was first created using MATLAB and then converted to C

code for use on the SRC-6. The purpose of this study is to investigate the feasibility of

using a reconfigurable computer for ELINT applications and the timely detection and

classification of LPI signals. This thesis is part of a larger study to use reconfigurable

computers for the autonomous detection and classification of LPI signals.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..2
C. RELATED WORK ..2
D. THESIS ORGANIZATION..3

II. SOFTWARE GENERATION ..5
A. BACKGROUND ..5

1. Choi-Williams Distribution (CWD) ...5
2. Choi-Williams Distribution MATLAB Benchmark7
3. Choi-Williams Distribution C Benchmark......................................10

B. 4 BY 4 INPUT SIGNAL VERIFICATION ...11
1. Input Signal ..11
2. Wigner-Ville Distribution ...11
3. Choi-Williams Kernel Function..12
4. Fast Fourier Transform Function ..13
5. 4 by 4 Verification Results ..14

C. 512 BY 512 INPUT SIGNAL VERIFICATION ...15
D. SOFTWARE GENERATION – CONCLUSION16

III. SRC-6 IMPLEMENTATION...17
A. BACKGROUND ..17

1. SRC-6 Hardware Background..17
2. SRC-6 Software Configuration...20
3. SRC-6 Summary ..20

B. CODE CONVERSION..21
1. Main Code...21
2. MC Code ...22
3. Makefile Code...22

C. CODE VERIFICATION - FMCW...22
1. FMCW LPI Signals..22
2. Frank Code LPI Signals ..23
3. Costas Code LPI Signals ...25
4. Hybrid Code LPI Signals ..26

D. CODE VERIFICATION – CONCLUSION..28

IV. PERFORMANCE EVALUATION..29
A. BACKGROUND ..29
B. ASSUMPTIONS...29
C. RESULTS ...30

1. MATLAB Results...31
2. C Code Results ...31
3. SRC C Code Results ..32

 viii

4. Results Summary ...33

V. RESULTS AND CONCLUSIONS ...35
A. RESULTS ...35
B. CONCLUSIONS ..36
C. RECOMMENDATIONS FOR FUTURE WORK......................................37

APPENDIX A. LPI SIGNAL GENERATION..39

APPENDIX B. CHOI-WILLIAMS DISTRIBUTION C CODE.......................................41

APPENDIX C. FFT.C C CODE ...49

APPENDIX D. PLOTTING M CODE...53

APPENDIX E. SRC MAIN CODE...57

APPENDIX F. MAP ROUTINE .MC CODE ...67

APPENDIX G. MAKEFILE CODE ..69

APPENDIX H. TIMING CODE...71

APPENDIX I. TIME TRIALS..73

LIST OF REFERENCES..81

INITIAL DISTRIBUTION LIST ...83

 ix

LIST OF FIGURES

Figure 1: Autonomous Low Probability of Intercept (LPI) Detection and
Classification System Using the SRC-6 Reconfigurable Computer. (From:
[2])..2

Figure 2: 3-D Mesh Plot of an FMCW Test Signal Using MATLAB CWD
Software. ..8

Figure 3: Marginal Frequency Distribution of an FMCW Test Signal Using
MATLAB CWD Software...8

Figure 4: Marginal Time Distribution of the FMCW Test Signal Using MATLAB
CWD Software...9

Figure 5: Time - Frequency Plot of an FMCW Test Signal Using MATLAB CWD
Software. ..10

Figure 6: Time vs. Magnitude Plot FMCW test signal using C code CWD software. ...15
Figure 7: SRC-6 System Architecture. (From: [12])...17
Figure 8: Naval Postgraduate School SRC-6 Diagram. ..18
Figure 9: SRC-6 Multi-Adaptive Processing (MAP) Boards Diagram. (From: [13]).....19
Figure 10: Time - Frequency Plot of an FMCW Test Signal Using SRC C Code

CWD Software...23
Figure 11a: MATLAB Results on a Frank Code LPI Signal. ...24
Figure 11b: SRC Results on a Frank Code LPI Signal. ..24
Figure 12a: MATLAB Results on a Costas Code LPI Signal...25
Figure 12b: SRC Results on a Costas Code LPI Signal. ...26
Figure 13a: MATLAB Results on a Hybrid Costas Code LPI Signal.27
Figure 13b: SRC Results on a Hybrid Costas Code LPI Signal..27

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Input Signal Data for Code Verification..11
Table 2. MATLAB Code Output for Wigner-Ville Distribution...................................12
Table 3. C Code Output for Wigner-Ville Distribution. ..12
Table 4. MATLAB Code Output for Choi-Williams Distribution.13
Table 5. C Code Output for Choi-Williams Distribution...13
Table 6. MATLAB Code Output for a 4 by 4 Input Matrix. ...14
Table 7. C Code Output for a 4 by 4 Input Matrix. ...14
Table 8. Time Results for Choi-Williams Distribution Code.30
Table 9. Time Results for Choi-Williams Distribution (CWD) MATLAB Code.31
Table 10. Time Results for Choi-Williams Distribution (CWD) C Code.32
Table 11. Time Results for Choi-Williams Distribution SRC C Code............................33
Table 12. Time Results for the Fast Fourier Transform (FFT)..34

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ADC Analog to Digital Converter

CWD Choi-Williams Distribution

DFT Discrete Fourier Transform

DMA Direct Memory Access

DOD Department of Defense

ELINT Electronic Intelligence

F∆ Modulation Bandwidth

FFT Fast Fourier Transform

FMCW Frequency Modulated Continuous Wave

FPGA Field Programmable Gate Arrays

I In Phase Portion of Data

LPI Low Probability of Intercept

MAP Multi-Adaptive Processing

N Number of Samples

NPS Naval Postgraduate School

PRI Pulse Repetition Interval

Q Quadrature Portion of Data

QMFB Quadrature Mirror Filter Bank

SNR Signal To Noise Ratio

USMC United States Marine Corps

USNR United States Naval Reserve

WVD Wigner-Ville Distribution

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Many thanks to David Caliga of SRC Computer for his quick responses to all

questions and his timely supply of SRC Fast Fourier Transform (FFT) MAP code. The

documentation he provided of the SRC-6 programming environment along with the

documentation on the FFT code was invaluable and made programming on the SRC-6

possible.

I am also thankful to Professor Phillip Pace of NPS who provided oversight over

the creation and verification of the Choi-Williams distribution in MATLAB. His research

on LPI signal processing using the Wigner-Ville distribution was directly applicable to

the generation of the Choi-Williams code.

I would also like to thank Professor Douglas Fouts of NPS who was my thesis

advisor and provided the support on SRC-6 questions and directed all of my questions to

the best sources of information. His timely suggestions made the thesis process proceed

smoothly.

Many thanks also to Dan Zulaica who went above and beyond to install the FFT

MAP code as soon as it was received. He also maintained the SRC-6 so that it was

always operational when needed and provided documentation on how to use the

hardware. He was always available to answer questions no matter how small.

Much thanks goes to our sponsors. This research was supported in part by the

National Security Agency for providing the SRC-6 and the Office of Naval Research,

Code 312 Arlington, VA, for supporting the algorithm development.

I am also thankful for the support of my husband, who had his own thesis to

accomplish and my daughter who was born during our time here at Monterey. However,

none of it would have been possible without the on-site support of my father who made it

possible to be both new parents and complete our thesis work.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

Low probability of intercept (LPI) signals are increasingly difficult to detect using

traditional electronic intelligence (ELINT) approaches. Intercepting these signals and

extracting parametric data for classification has become more and more challenging.

A possible solution to the detection and classification of LPI signals for ELINT is

to use multiple detection strategies against an LPI signal and automate the classification

process. This would cover a variety of LPI signals and utilize the strengths of different

detection strategies. The drawback to this solution is that many of these strategies take

long computational times.

The objective of this thesis was to investigate the feasibility of using the SRC-6

reconfigurable computer to utilize the Choi-Williams distribution (CWD) as a detection

strategy. Using a reconfigurable computer may decrease the computational time of the

CWD. This objective is part of a larger study to use the SRC-6 for the autonomous

detection and classification of LPI signals.

First, the Choi-Williams distribution was designed in MATLAB to validate the

strategy against several different types of LPI signals. This was used as a benchmark for

future work. Second, the software was converted from MATLAB to standard C code. At

this stage the code was functional on the common memory of the SRC but did not utilize

the reconfigurable aspect of the SRC-6 hardware. Last, the code was modified to run on

the Multi-Adaptive Processing (MAP) board utilizing the reconfigurable hardware

aspects of the SRC-6.

The results of the timing analysis show that the C code was the fastest

implementation. The MATLAB implementation was highly dependent on the specific

computer running the software and any background processes that may have been

running. The SRC-6 C code implementation using the Multi-Adaptive Processing (MAP)

board was comparable to the MATLAB code run on a 1.6 GHz processor with one

gigabyte of random access memory using MATLAB Student Version 7.1. The SRC-6 C

 xviii

code implantation was faster than the MATLAB code run on a 3 GHz processor with 512

megabytes of random access memory using MATLAB 7.4.0 R2007b.

 It should be noted that: (1) the MATLAB timing was greatly dependent on the

specific computer running the software and any background processes that may have

been running, (2) the Choi-Williams distribution kernel function was the most time

consuming portion of the code in all three coding implementations (2) the SRC-6 code

can be further optimized for this application and as an ELINT detection system as a

whole. Further investigation into optimizing the SRC-6 C code for the Choi-Williams

distribution should be accomplished.

 1

I. INTRODUCTION

A. BACKGROUND

Low probability of intercept (LPI) signals are signals that are increasingly

difficult to detect using traditional approaches. These signals are commonly mistaken for

noise if they are noticed by the detection system at all. LPI signals use a variety of

techniques using frequency modulation, phase modulation or a combination of techniques

to avoid detection.

 Intercepting these signals and extracting parametric data for classification has

emerged as a new field of electronic warfare study in recent years. Several strategies for

detecting and classifying these signals have emerged. Each strategy has its own strengths

and weaknesses against the variety of LPI signals present. Some strategies work well

against frequency modulated continuous wave (FMCW) LPI signals and others are used

for extracting parameters from polyphase signals.

 A possible solution to the detection and classification of LPI signals is to use

multiple detection strategies against an LPI signal to extract as much information from

the signal as possible. This would cover a variety of LPI signals and utilize the strengths

of different detection strategies and compensate where a strategy was weak. The

drawback to this solution is that many of these strategies take long computational times.

The ideal implementation of this solution would be to achieve real time parallel

processing of several detection strategies. The output of these detection strategies could

be run through an automated detection system. This would allow for automated detection,

classification, and parameter extraction of the LPI signal modulations.

This thesis is an extension of a larger effort to create an autonomous LPI detection

and classification system. This thesis explores the use of the SRC Computers Corporation

SRC-6 reconfigurable computer in an automated LPI detection and classification system.

Specifically, the SRC computer will be configured to use the Choi-Williams distribution

(CWD) as a detection strategy to analyze signals [1].

 2

B. OBJECTIVE

The objective of this thesis was to investigate the feasibility of using the SRC-6

reconfigurable computer to utilize the Choi-Williams distribution for detection and

classification of LPI signals. This objective is part of a larger study to use the SRC-6 for

the autonomous detection and classification of LPI signals.

C. RELATED WORK

The overall effort of using the SRC-6 for autonomous detection and classification

of LPI signals has been the focus of several Naval Postgraduate School (NPS) theses.

Figure 1 shows the overall design of the autonomous system.

Figure 1: Autonomous Low Probability of Intercept (LPI) Detection and
Classification System Using the SRC-6 Reconfigurable Computer. (From: [2])

Captain Kevin Stoffel, United States Marine Corps (USMC) conducted the study

of the quadrature mirror filter bank (QMFB) for use on the SRC-6 [2]. This analysis

involved the conversion of a detected signal space into a frequency-time plot using

 3

analog to digital (ADC) converters on the SRC-6. Ensign Dane Brown, United States

Naval Reserve (USNR), generated the signal processing to convert the frequency-time

plot data into a bitmap [3]. This bitmap was used for LPI emitter classifications. Mr.

Scott Bailey demonstrated the use of neural networks for the classification of LPI

emitters, specifically for use with the QMFB bitmaps [4].

Current work on the LPI detection system, excluding this thesis, include the study

of cyclostationary signal processing on the SRC-6 by Gary Upperman, Department of

Defense (DOD) civilian[5]. Future thesis work will concentrate on other areas of the LPI

detection system as well as the integration of the whole system.

D. THESIS ORGANIZATION

The remainder of this thesis will be organized as follows:

• Chapter II discusses the software development, giving a general

background and a verification of the software code.

• Chapter III discusses porting the software to the SRC-6, giving a general

background on the SRC-6 hardware and showing the software

modifications needed to use the SRC-6 hardware.

• Chapter IV discusses performance analysis of the system using the

generated code.

• Chapter V provides an overall summary of the results, the conclusions

generated from the results and any future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. SOFTWARE GENERATION

A. BACKGROUND

Before any code was generated, an analysis of the Choi-Williams Distribution

(CWD) was conducted. This distribution is similar to the Wigner-Ville Distribution

(WVD) with a exponential kernel. A brief explanation of the distribution can be found in

this chapter.

To benchmark any code generated, the LPI Toolbox was used to create LPI

signals. This software was developed by Dr. Phillip E. Pace and is documented in [6]. For

more information on the LPI signals used, please see Appendix A.

1. Choi-Williams Distribution (CWD)

 The Choi-Williams distribution (CWD) is a time-frequency analysis technique

used for signal processing. A signal is considered stationary over a short time period and

a “snapshot” is taken. A Fourier transform of the sampled in-phase and quadrature data is

used to determine the energy distribution of the signal at the time of the sample. This

energy distribution can be used to determine signal characteristics. The time period

chosen for the sampled data determines the resolution of the Fourier transform. A short

period gives poor frequency resolution and a long period in effect blurs the “snapshot”.

 Several techniques have been identified to increase both frequency and time

resolution concurrently. These techniques, or distributions, utilize different kernel

functions to achieve better resolution. A kernel is a weighting function applied to the

data. The output of a distribution is the original “snapshot” where the data has been

smoothed and weighted to increase the time and frequency resolution. From these results

signal parameters such as carrier frequency, pulse repetition intervals, coding schemes,

etc. can be determined.

One of the most common distributions is the Wigner-Ville distribution which has

a kernel of one. This distribution works well for “signals whose instantaneous frequency

 6

and group delay correspond to the same curve in the time-frequency plane” [1]. However,

when the WVD is applied to signals that do not fall into this category, there are cross

terms that can obscure the results. The CWD described below has an exponential kernel

and is useful for reducing the magnitude of the cross terms.

The Choi-Williams distribution was identified by Choi and Williams in 1989 and

found in [1]. The equation for the continuous Choi-Williams distribution of the input

signal ()x t is given by

2

2
()
4 /

2

1(,) () *()
2 24 /

t
j

xCWD t e e x x d d
µ

ωτ τ σ

τ µ

τ τω µ µ µ τ
πτ σ

−∞ ∞ −
−

=−∞ =−∞

= + −∫ ∫ (1.1)

where t is the time variable,ω is the angular frequency variable, σ is a positive-valued

scaling factor, and * indicates the complex conjugate. The CWD can also be defined

from the Fourier transform ()X ω of ()x t as shown below.

2

2
0 0

0

()
4 / 0 0

02
0

1 1(,) () *()
2 2 24 /

j t
XCWD t e e X X d d

µ ω
ω ω σ

ω µ

ω ωω µ µ µ ω
π πω σ

−∞ ∞ −
−

=−∞ =−∞

= + −∫ ∫ (1.2)

This can then be expressed with a discrete time index and windowed for large

data sample sets shown in the following equation

 2(,) 2 () (,) j n
x

n
CWD W n S n e ωω

∞
−

=−∞

= ∑ (1.3)

where

2

2
()2
4 /

2
2

1(,) () () *()
4 /

M
n

M

S n W e x n x n
n

µ
σ

µ

µ µ µ
π σ

−
−

=−

= + −∑ (1.4)

and ()W n is a symmetrical window (such as Hamming) which has nonzero values on the

interval - / 2N to / 2N and () W µ is a uniform rectangular window that has a value of one

for the range of - / 2M and / 2M . The choices of N and M on these windows

respectively determine the frequency resolution of the CWD and the range at which the

function will be defined.

The discrete CWD can be modified to fit the standard discrete Fourier Transform

(DFT) by setting / 2k Nω π= [7]. The final equation is written

 7

2 1

2 /

0
(,) 2 '(,)

2

N
j kn N

x
n

kCWD S n e
N

ππ −
−

=

= ∑ (1.5)

where the kernel function '(,)S n is defined as

(,), 0 1

'(,) 0,
(, 2), 1 2 1

S n n N
S n n N

S n N N n N

≤ ≤ −⎧
⎪= =⎨
⎪ − + ≤ ≤ −⎩

 (1.6)

and (,)S n is defined in Equation 1.4.

2. Choi-Williams Distribution MATLAB Benchmark

Equations (1.5) and (1.6) were then modeled in MATLAB. The MATLAB code

was used to benchmark results found on the SRC-6 computer. A full description of the

generation of the CWD expression used for all coding in this thesis can be found in [8].

Additional information in [9] and [10] were used to generate these results.

The MATLAB code generates an N by N matrix which results in a three

dimensional image that can be used to determine signal characteristics such as

frequency, pulse repetition interval (PRI), and signal period to name a few. The variable

N is defined as the number of samples input into the system. Due to the repetitive use of

the Fast Fourier Transform (FFT) in the software, the size of N is generally set at a small

power of two, either 256 or 512 samples. Examples of the image output for N equal to

512 are shown in Figures 2 through 5.

In this example, an LPI signal using FMCW techniques can be seen. The FMCW

signal was generated with a carrier frequency of 1 kHz, a sampling frequency of 7 kHz, a

modulation frequency (bandwidth) of 250 Hz, a modulation period of 20µs and a signal

to noise ratio (SNR) of 0 dB.

 Figure 2 shows the 3-D plot of the software results. Notice that the FMCW signal

is clearly visible against the background noise. More information can be seen by

examining this graph from different perspectives.

 8

Figure 2: 3-D Mesh Plot of an FMCW Test Signal Using MATLAB CWD
Software.

Figure 3 shows a plot of the marginal frequency distribution. This shows the

CWD identified the carrier frequency of 1 kHz. The width of the modulation is the

FMCW modulation bandwidth, F∆ , of 250 Hz.

Figure 3: Marginal Frequency Distribution of an FMCW Test Signal Using
MATLAB CWD Software.

 9

 Figure 4 shows the marginal time distribution. This perspective of an FMCW

signal does not clearly show the important characteristics of the signal. It is included here

as an example of the type of output available when performing a CWD on an LPI signal.

Figure 4: Marginal Time Distribution of the FMCW Test Signal Using MATLAB
CWD Software.

The final perspective is a time-frequency plot of the modulation as shown in

Figure 5. The carrier frequency, the modulation bandwidth and the modulation period can

all be identified from this perspective. The signal is visible at the carrier frequency of 1

kHz. The modulation period, which was unclear in the previous figures, can now be seen.

 10

Figure 5: Time - Frequency Plot of an FMCW Test Signal Using MATLAB CWD
Software.

 Figures 2 thru 5 above are examples of the output of the CWD software code.

Signal characteristics can be clearly identified and extracted from the graphs due to the

reduction of cross-terms. Producing these graphs in a real-time environment and coupling

it with an automatic identification algorithm would be advantageous in many military

applications.

3. Choi-Williams Distribution C Benchmark

The MATLAB code was first converted into C code to be translated to the SRC-6.

A step by step verification process of the C code was performed to verify the Choi-

Williams distribution technique. After the code was verified on a small scale, the code

was tested against a variety of fully developed signals generated by the LPI Toolbox.

 11

B. 4 BY 4 INPUT SIGNAL VERIFICATION

For an N by N verification, a portion of a generated LPI signal was used.

N must be a power of two therefore an LPI signal with a length of four samples was

used. A signal of four samples is not long enough to determine signal characteristics but

was sufficient to verify the software.

1. Input Signal

The input signal is described below in Table 1. For the code, the input signal must

be a readable file with a column of real (I) data and a column of imaginary (Q) data.

Table 1. Input Signal Data for Code Verification.

I Data Q Data
0.423889315973369 -0.576110684026631
1.323504414322150 1.481846094931446

 -1.482367378829204 -0.284918532691066
 -0.932103072187372 0.402749534832605

2. Wigner-Ville Distribution

The first step in carrying out the Choi-Williams distribution is to calculate the

Wigner-Ville distribution and then modify that output with Choi-Williams weighting

functions. In MATLAB, this step was a single for loop. In the resulting C code this step

was a multiple stage loop shown in Appendix B. Each step had to be broken out into a

separate loop and included in an overall loop.

The output of the MATLAB code (variable “WV”) is shown in Table 2. This data

can be compared to the output of the C code (variables “IWV” and “QWV”) found in

Table 3. Data in Tables 2 and 3 have been rounded to fit the table format. MATLAB and

the C code uses 15 decimals of precision.

 12

Table 2. MATLAB Code Output for Wigner-Ville Distribution.

 Column 1 Column 2 Column 3 Column 4

Row 1 1.0310 0 0 0

Row 2 2.2786 -0.6368 - 1.9143i 0 -0.6368 + 1.9143i

Row 3 3.9475 -0.4642 + 0.9748i 0 -0.4642 - 0.9748i

Row 4 0.5116 0 0 0

Table 3. C Code Output for Wigner-Ville Distribution.

 Real Data (I)

 Column 1 Column 2 Column 3 Column 4

Row 1 1.0310 -0.0000 0.0000 -0.0000

Row 2 2.2786 -0.6368 0.0000 -0.6368

Row 3 3.9475 -0.4642 0.0000 -0.4642

Row 4 0.5116 0.0000 0.0000 0.0000

 Imaginary Data (Q)

 Column 1 Column 2 Column 3 Column 4

Row 1 -0.0000 -0.0000 -0.0000 -0.0000

Row 2 -0.0000 -1.9143 -0.0000 1.9143

Row 3 -0.0000 0.9748 -0.0000 -0.9748

Row 4 -0.0000 -0.0000 -0.0000 -0.0000

Notice that the solutions to the Wigner-Ville distribution are the same for both

sets of code. The only difference is the way in which the complex numbers are stored.

The final output of the Wigner-Ville distribution is an N -by- N array.

3. Choi-Williams Kernel Function

 Once the Wigner-Ville distribution is calculated the Choi-Williams kernel

function, '(,)S n , can be determined and applied to the Wigner-Ville output array. In

MATLAB, using array functions, the kernel can be applied using a single nested for loop.

The C code implementation had to be broken into several steps.

 13

 The output from the MATLAB code for the Choi-Williams distribution before the

FFT can be found in Table 4 and is labeled in the MATLAB code “kern” while the output

of the equivalent C code is shown in Table 5 and is labeled “Ikern” and “Qkern”.

Table 4. MATLAB Code Output for Choi-Williams Distribution.

 Column 1 Column 2 Column 3 Column 4

Row 1 0.5116 3.9475 2.2786 1.0310

Row 2 -0.1681 - 0.0155i -0.2709 + 0.1456i -0.2816 + 0.3259i -0.1881 + 0.3194i

Row 3 0.0000 0.0000 0.0000 0.0000

Row 4 -0.1681 + 0.0155i -0.2709 - 0.1456i -0.2816 - 0.3259i -0.1881 - 0.3194i

Table 5. C Code Output for Choi-Williams Distribution.

 Real Data (I)

 Column 1 Column 2 Column 3 Column 4

Row 1 0.5116 3.9475 2.2786 1.0310

Row 2 -0.1681 -0.2709 -0.2816 -0.1881

Row 3 0.0000 0.0000 0.0000 0.0000

Row 4 -0.1681 -0.2709 -0.2816 -0.1881

 Imaginary Data (Q)

 Column 1 Column 2 Column 3 Column 4

Row 1 -0.0000 -0.0000 -0.0000 -0.0000

Row 2 -0.0155 0.1456 0.3259 0.3194

Row 3 -0.0000 -0.0000 -0.0000 -0.0000

Row 4 0.0155 -0.1456 -0.3259 -0.3194

Again, the data from both source codes is comparable, only the way in which the

complex numbers are stored varies from MATLAB to C code. This shows that the data

manipulation prior to completing the FFT produces the same results.

4. Fast Fourier Transform Function

In MATLAB, the FFT is accomplished by using the built-in fft() code available.

Neither the standard library, nor the math library in C, contains an equivalent function.

 14

Therefore a separate FFT had to be generated. Code supplied by Professor Jerome R.

Breitenbach of California Polytechnic State University was used to accomplish the FFT

needed [11]. This code can be found in Appendix C.

The final result of the MATLAB code contains only the real portion of the FFT

and can be found in Table 6. Table 7 contains the real portion of the equivalent C code

output. From this final output there are differences in the fourth decimal place. This is

most likely due to differences in the implementation of the FFT.

Table 6. MATLAB Code Output for a 4 by 4 Input Matrix.

 Column 1 Column 2 Column 3 Column 4

Row 1 0.3509 6.8116 3.4307 1.3097

Row 2 0.9612 8.4774 5.8606 3.3396

Row 3 1.6955 8.9785 5.6837 2.8144

Row 4 1.0852 7.3128 3.2538 0.7845

Table 7. C Code Output for a 4 by 4 Input Matrix.

 Column 1 Column 2 Column 3 Column 4

Row 1 0.3509 6.8116 3.4306 1.3097

Row 2 0.9612 8.4774 5.8606 3.3397

Row 3 1.6955 8.9785 5.6837 2.8144

Row 4 1.0852 7.3127 3.2538 0.7844

5. 4 by 4 Verification Results

 From this detailed analysis it can be shown that the C code functions as designed

at each critical step of the software code. With this knowledge it can now be shown that

the C code will function as desired when larger input matrices are used. From a practical

standpoint, a larger input matrix is equivalent to a larger sample size of an unidentified

LPI signal.

 15

C. 512 BY 512 INPUT SIGNAL VERIFICATION

Practically, it is difficult to show the same steps as shown in previously using

tables. The identical graphing function in MATLAB will be used on both the matrix

output of the MATLAB code and the C code to make an accurate comparison. The code

can be found in Appendix D. Figure 5 showed the results of a MATLAB CWD

calculation with N equal to 512. Figure 6 shows the output of the C CWD calculation.

Figure 6: Time vs. Magnitude Plot FMCW test signal using C code CWD software.

There is very little visible difference between Figure 5 and Figure 6. A close

inspection reveals minor differences that can be contributed to the different FFT

algorithm. This is a final confirmation that the C code performs as expected when

compared to the MATLAB output.

 It should be noted that an N of less than 512 begins to decrease the number of

signal characteristics that can be determined. A sample size of 256 would reduced the

 16

above graph to half of the time scale. This would make the modulation period difficult to

detect. These results may vary depending on what type of LPI signal is being analyzed.

D. SOFTWARE GENERATION – CONCLUSION

 The CWD was a time-frequency analysis technique that used an exponential

kernel, or weighting function, for signal processing. MATLAB code for the CWD was

analyzed for a signal with a length of 512 samples. Standard C code was generated and a

step by step verification was conducted with a signal length of four. These results were

then expanded to verify that the C code functioned correctly for a signal length of 512

samples.

 In the next chapter, the SRC-6 was reviewed and the standard C code was

modified to utilize SRC-6 resources. Several signals were analyzed to verify that the

algorithm was successfully modified from the original MATLAB.

 17

III. SRC-6 IMPLEMENTATION

A. BACKGROUND

The final stage of converting the MATLAB code for use on the SRC-6 is to make

some modifications to the C code developed above. The goal of converting the CWD

technique to function on the SRC-6 is to increase the speed of the computation.

1. SRC-6 Hardware Background

The SRC-6 is a reconfigurable computer which can be tailored for a specific

objective. Figure 7 shows a generic overview of the system architecture. There is a

microprocessor board, a Multi-Adaptive Processing (MAP) board, and a common

memory. The MAP is interfaced to the microprocessor board via Direct Memory Access

(DMA) Procedures. Both the MAP and the microprocessor board have access to a

common memory.

Figure 7: SRC-6 System Architecture. (From: [12])

 18

A diagram of the SRC-6 at NPS can be found in Figure 8. The SRC-6 has two

microprocessor boards. Each microprocessor board contains two Intel® Xeon™ 2.8 GHz

processors. There are five Multi-Adaptive Processing (MAP) boards available, two MAP

B boards and three MAP E boards. The B series board was not used for this thesis.

 Front Back

Figure 8: Naval Postgraduate School SRC-6 Diagram.

 19

The MAP E board contains two Virtex-II Pro XC2VP100 Platform Field

Programmable Gate Arrays (FPGAs) which perform the user logic sent to the MAP.

There are seven on-board memory banks with a total bandwidth of 11.2

gigabytes/second. The MAP also has two general purpose input/output ports for MAP to

MAP connections or other data input [13]. Figure 9 shows the outline of a MAP board.

Figure 9: SRC-6 Multi-Adaptive Processing (MAP) Boards Diagram. (From: [13])

 The MAP board is the key to the SRC-6’s potential performance improvement

over the standard MATLAB routine execution on a standard computer. Each MAP board

is independent of the microprocessor and has access to the common memory. The MAP

board is controlled by a command list that controls functions such as the DMA

interactions. The FPGAs in the MAP board contain the user defined algorithm. Individual

MAP boards can interact between other MAP boards without using the memory

bandwidth in the system [14].

 Each MAP can be used to perform repeated algorithms found in the overall larger

code. For example, the FFT algorithm used in the MATLAB and C code can be run

separately on the MAP unit and not access other common memory used for other

functions in the code.

 20

 An LPI detection system benefits from running multiple algorithms

simultaneously on the same data set. Algorithms can be tailored to maximize the

performance of each detection strategy and the autonomous classification of LPI signals.

2. SRC-6 Software Configuration

Three types of files are needed to execute the algorithm generated in Chapter

II.A.3 on the SRC-6 system. These files are the Makefile, the main file, and the MAP

routines. Each type of file is outlined below. Refer to [14] for more information on each

type of file and its construction.

The Makefile defines what preprocesses have to occur prior to compilation. It also

includes instructions for the type of complier to be used, flags used for debugging, and

floating point standards. The Makefile also specifies which main file, map routines, and

user macros (if any) should be compiled. The name of the output file is also established.

The Makefile is used to compile all the routines at once. A template is given in [14].

The second type of file is the main body of the algorithm, usually generated in C

or Fortran. This main file may contain the brunt of the algorithm setup and definition.

This portion of code is run on the microprocessor(s) of the SRC-6.

The largest computational function in the algorithm is defined in the third type of

file, the MAP routine files. These are the files to be specifically run on the MAP

processor. Several MAP routines can also be identified and use the same MAP board for

different portions of the algorithm. No MAP routine has to be defined if all of the

algorithm will be processed using the microprocessor. However, without utilizing the

MAP board all the benefits of a reconfigurable computer are lost.

3. SRC-6 Summary

 In summary, to utilize the benefits of the SRC-6, the C code generated in Chapter

II must be modified to take advantage of the MAP boards. This modification allows more

repetitious sections of code to be performed on the FPGAs on the MAP boards which can

increases the overall speed of the computation. Due to the configurable nature of the

 21

SRC-6 there are many ways to modify the original C code to take advantage of the MAP

boards. One implementation is identified in the next section.

B. CODE CONVERSION

 The code in Chapter II was modified to run on the SRC processors and MAP

boards. Three files were generated to run the Choi-Williams Distribution. Each file is

detailed below.

1. Main Code

The main code, named choiSRC.c, needed very little modifications. Overall, the

code functions the same as it did previously. Most of the modification required was

necessary to interface with the function located on the MAP board. The main code can be

found in Appendix E.

 First, to use the MAP board, the board itself had to be allocated and set aside for

the function. This is accomplished using a map_allocate(X) command. Similarly,

after the function has been called and the MAP board is no longer needed a

map_free(X) command is used.

 Second, the arrays that are sent to the function have to be aligned in memory. To

facilitate this function the SRC has a built in function called

Cache_Aligned_Allocate(size). This function positions a pointer along a

cache-aligned buffer and replaces all the malloc commands found in the original C

code.

 Last, the FFT algorithm used in the original C code was a recursive code that

could not be directly translated to the MAP board. Because of this a different FFT

algorithm was used. This algorithm required the generation of a twiddle table which was

used as a weighting table in the FFT algorithm. This table was based on the length N of

the input signal.

 22

2. MC Code

The FFT algorithm was the function that was ported to the MAP board. The

original C code FFT algorithm was not easily portable to the MAP board therefore a new

FFT algorithm was needed. The SRC Computers Corporation provided NPS with an FFT

library that could be used directly by the MAP board and sample code on how to

efficiently use the library [15]. The sample code was modified to fit the specific needs of

the original C code and increase the efficiency of the code for this specific use. A copy of

this code can be found in Appendix F.

3. Makefile Code

The Makefile used for this code began with the standard template. The sections

for FILES, MAPFILES, and BIN were appropriately filled out. To run the FFT provided

by SRC Computers, extra lines to include the FFT_LIB were added. Also, the flags were

set to –log so that a log file would be generated after the code was complied. The code

can be found in Appendix G.

C. CODE VERIFICATION - FMCW

An N by N comparison where N is equal to 512 was conducted to verify the

SRC C code is functioning as designed. First, the signal used in the previous section was

used to verify the SRC C code results. Second, the code was run against three other LPI

signals to confirm that the software is robust and can support a variety of LPI signals.

1. FMCW LPI Signals

 The LPI signal used in Figures 5 and 6 was again be used for verification of the

SRC C code. The signal used was an FMCW with a carrier frequency of 1 kHz, a

sampling frequency of 7 kHz, a modulation bandwidth of 250 Hz, a modulation period of

20 µs and a SNR of 0 dB. Figure 10 shows the results of the SRC C code using

MATLAB to graph the results.

 23

Figure 10: Time - Frequency Plot of an FMCW Test Signal Using SRC C Code

CWD Software.

 A comparison between Figures 5, 6 and 10 show that the output is indeed similar.

It is important to note that these results do not show the magnitude of the output. Due to

the different FFT algorithms used at each stage (MATLAB, C, and SRC) the magnitudes

of these graphs are all different. For use in LPI detection and identification however, the

magnitude of these plots is irrelevant as long as the ratios are maintained as shown in the

graphs above.

2. Frank Code LPI Signals

 Frank codes are polyphase codes that are derived from linear frequency

modulated (FM) waveforms. This code approximates a linear FM using a finite number

of frequency steps. The Frank code had a carrier frequency of 1 kHz with four frequency

steps and one cycle per step. The period was 16 ms and the SNR was 0 dB. It was

sampled at a rate of 7 kHz. For more information on Frank codes see [6], Section 5.6.

Figure 11 shows a comparison between the MATLAB code and the SRC C code.

 24

Figure 11a: MATLAB Results on a Frank Code LPI Signal.

Figure 11b: SRC Results on a Frank Code LPI Signal.

 25

There is no discernable difference between Figures 11a and 11b. The LPI signal is

very visible against the 0 dB of noise. The code period of 16 ms is well defined as well as

the code bandwidth. The carrier frequency is the middle point of the bandwidth and is 1

kHz.

3. Costas Code LPI Signals

 Costas codes are sequences of frequencies that are best suited for unambiguous

range and Doppler measurements with limited amount of interference between

frequencies. The Costas codes used for this example are [3000, 2000, 6000, 4000, 5000,

1000] Hz. Each frequency is on for a duration of 0.005 seconds. The ADC has a sampling

frequency of 15,057 Hz and the SNR is 0 dB. For more information on Costas codes see

[6], Section 6.4. Figure 12 shows the results of both the MATLAB and the SRC

implementations.

Figure 12a: MATLAB Results on a Costas Code LPI Signal.

 26

Figure 12b: SRC Results on a Costas Code LPI Signal.

Both Figure 12a and 12b show the same results using two different coded

algorithms. Note that each frequency is noted as a different color in the graph and they

occur along the time axis in the order in which they were originally transmitted. The

Costas sequence used by the LPI signal is very apparent without any prior knowledge of

the signal.

4. Hybrid Code LPI Signals

 A hybrid LPI signal is a signal that combines characteristics from both frequency

modulation techniques and phase modulation techniques. A 5-bit Barker code is used for

each frequency in the Costas sequence and the Costas sequence is the same sequence

used in Section C.3. For more information on hybrid LPI signals see [6], Section 6.5. The

results are shown in Figure 13.

 27

Figure 13a: MATLAB Results on a Hybrid Costas Code LPI Signal.

Figure 13b: SRC Results on a Hybrid Costas Code LPI Signal.

 28

Figures 13a and 13b appear to be identical. Because of the dual LPI signal

techniques used on this signal it is harder to identify the six Costas codes but they are

visible in the diagram. The 5-bit Barker code is only visible by the spreading of the

frequency “spikes”. Another detection strategy may be more practical for determining the

Barker code sequence.

D. CODE VERIFICATION – CONCLUSION

 From the analysis of the above four signals it can be concluded that the SRC

implementation of the SRC code is functioning as designed and compares favorably to

the results generated by MATLAB. An analysis of the algorithm’s speed on the three

software platforms will be conducted in the next chapter.

 29

IV. PERFORMANCE EVALUATION

A. BACKGROUND

 The objective of this thesis was to investigate the feasibility of using the SRC-6

reconfigurable computer to compute the CWD on LPI signals. To this point the code has

been verified and the CWD can be processed on the SRC-6. For a complete evaluation

the final step is to determine the speed at which the CWD algorithm can be performed.

For comparison purposes, the speed of the SRC algorithm utilizing the MAP boards will

be compared against both the speed of the MATLAB code and the C code.

The MATLAB code was timed twice, once on a 3.0 GHz Pentium 4 Windows-

based networked computer with 512 megabytes of random access memory using

MATLAB 7.4.0 R2007b and again on a stand alone computer with a 1.6 GHz processor

with one gigabyte of random access memory using MATLAB Student Version 7.1. The

C and the SRC-6 C code were run on the Linux-based SRC-6 processor utilizing the

same C compiler to help ensure a valid comparison.

B. ASSUMPTIONS

 The following assumptions were used to make the most accurate comparison

possible:

• All input LPI signals were a length of 512 samples long.

• The graphing functions were assumed to take the same amount of time and
were not included in the overall timing of the algorithm. The results of the
CWD would be input to the next phase of an automated LPI detection and
classification system (such as Figure 1) and would not be graphed as
output for a user to view.

• The time to read in a file or read out a file was not included. While this
function was necessary for the SRC output, it was not generated in the
MATLAB code. In an LPI detection system the input would be fed
directly to the hardware and the output would be sent to the next phase,
not converted to an output file.

• In MATLAB the tic and toc functions were used. The output of these
functions is a total elapsed time in seconds.

 30

• The C and SRC code was timed using the structure found in Appendix H.
This structure allowed for more precise timing than the time() function.
The output was in seconds. The hardware dependency of the timing
function was reduced by using the SRC compiler for both SRC and the C
code. All timing was accomplished when there were no other users
utilizing any SRC resources.

• A total of 20 trials were conducted for each algorithm. These were then
averaged to generate a mean value. The results of all the trials can be
found in Appendix I.

C. RESULTS

The timing results can be found in Table 8 below.

Table 8. Time Results for Choi-Williams Distribution Code.

LPI Signal File Name File
Size

MATLAB
Code1
(sec)

MATLAB
Code2
(sec)

C
Code
(sec)

SRC C
Code
(sec)

FMCW F_1_7_250_20_0 58 kB 42.36 34.08 6.85 36.64
Frank Codes FR_1_7_4_1_0 29 kB 42.38 34.26 6.85 36.56

Costas Codes C_1_15_5000_0 133
kB 42.42 34.30 6.87 37.44

Hybrid
Costas Codes FSK_PSK_Costas_15_5_0 53 kB 42.44 34.31 6.86 36.96

Note: C code timing utilized the C compiler on the SRC but not the Multi-Adaptive Processing (MAP)
board. The SRC Code timing used both the C compiler and the MAP board.

1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory
using MATLAB 7.4.0 R2007b.

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory
using MATLAB Student Version 7.1.

 From the above results there are several important items to note:

• It can be seen that the type of LPI signal did not have any affect on the
overall timing regardless of the code used.

• The file size did not have any affect on the length of time to run the code.
The CWD algorithm only used the first 512 samples, regardless of the
number of samples in the file.

• The C code was the fastest code and the slowest code was the MATLAB
code run on a 3 GHz processor with 512 megabytes of random access
memory using MATLAB 7.4.0 R2007b.

 31

1. MATLAB Results

An analysis of the MATLAB code shows that the majority of the time is spent

computing the CWD kernel. This is the section of code that computes the exponential

kernel of the CWD and gives the CWD an advantage over the Wigner-Ville distribution

by reducing cross terms. There were no apparent areas in the loop that could be altered to

increase the speed of the code.

 The MATLAB code was timed on two different computers. Timing was

dependent on the version of MATLAB and the hardware used. If it is assumed that the

Student Version would not outperform the full version of the software then the speed

increase must be due to either the availably of more random access memory or the

absence of background processes typically present on a networked computer. Timing

results of different aspects of the MATLAB code can be seen in Table 9. It can be seen

that approximately 80% of the time was spent in the CWD kernel portion of the

algorithm.

Table 9. Time Results for Choi-Williams Distribution (CWD) MATLAB Code.

LPI Signal
MATLAB

Code1
(sec)

CWD
Kernel1

(sec)

FFT1

(sec)

MATLAB
Code2
(sec)

CWD
Kernel2

(sec)

FFT2
(sec)

FMCW 42.36 33.56 0.03 34.08 27.40 0.02
Frank Codes 42.38 33.59 0.03 34.26 27.52 0.02
Costas Codes 42.42 33.63 0.03 34.30 27.56 0.02
Hybrid Costas

Codes 42.44 33.66 0.03 34.31 27.52 0.02
1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory

using MATLAB 7.4.0 R2007b.

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory
using MATLAB Student Version 7.1.

2. C Code Results

 The C Code was also analyzed to determine if the speed could be increased. A

straight conversion of the MATLAB code to C code, compiled using gcc, is very

inefficient and took approximately 98 seconds to run. This code was then reviewed to

determine if there were areas that could be improved on. Redundant computations were

 32

removed and calculations were performed congruently within one loop versus individual

loops for each task. This efficient use of loops and streamlining of the code removed 36

seconds from the overall speed and was approximately 36 seconds.

Next the compiler itself was reviewed. Using icc in place of gcc improved the

speed of the code. Then the compiler options were reviewed. The code streamlined

previously to approximately 36 seconds was reduced to approximately 6.5 seconds using

the compiler options: -O3 -tpp7 -xW -align -Zp16 -ipo –static . “-O3”

is an optimization option that vectorizes loops in the code to perform more efficiently. “-

tpp7 and –xW” are optimization codes specifically designed to work with Pentium 4

processors. The remaining options affect the way memory is used in the processor. For

more information on the options used see [16].

Table 10 shows the results of timing the C code. It can be seen that the majority of

the C code time, approximately 97%, was spent computing the CWD kernel. Execution

time of the FFT was longer in the C code than in MATLAB and the SRC code.

Table 10. Time Results for Choi-Williams Distribution (CWD) C Code.

LPI Signal C Code
(sec)

CWD Kernel
(sec)

FFT
(sec)

FMCW 6.85 6.66 0.08
Frank Codes 6.85 6.66 0.08
Costas Codes 6.87 6.68 0.08

Hybrid Costas Codes 6.86 6.67 0.08

3. SRC C Code Results

The optimized C code was used in developing the SRC C code using the MAP

resources. The compiler options used were: -O3 -tpp7 -xW –ip. The options to

affect memory would not function on the SRC. However all pointers were instantiated

using Cache_Aligned_Allocate verses malloc to align pointers at a cache

boundary. Table 11 shows timing results of individual aspects of the SRC code.

 33

Table 11. Time Results for Choi-Williams Distribution SRC C Code.

LPI Signal
Microprocessor

(sec)
MAP
(sec)

DMA
(sec)

FFT
(sec)

Call
(sec)

FMCW 36.407 0.028 0.023 0.004 0.209
Frank Codes 36.329 0.027 0.023 0.004 0.206
Costas Codes 37.203 0.027 0.022 0.004 0.206

Hybrid Costas Codes 36.725 0.027 0.022 0.004 0.205

The Microprocessor time is average time the algorithm spent on the

microprocessor. The MAP time was the average time it took to execute the entire MAP

subroutine which consists of the DMA time and the FFT time. The DMA time is the

average amount of time it took to transfer data to the MAP. The FFT time was the

average amount of time to complete the MAP routine. The Call Time is the average

amount of time to transition from the main C code to the MAP routine. These values are

the cumulative results throughout the entire program executed using 512 data samples.

For example, the FFT algorithm took 0.004 divided by 512, or 0.000008 seconds, each

time the algorithm was called. Also note, that the summation of the Microprocessor time,

the MAP time, and the Call time are equal to the data shown in Table 8.

4. Results Summary

 Each code implementation was slowest when executing the CWD kernel function.

This function is integral to the distribution and cannot be removed without altering the

distribution itself. However it may be able to be manipulated to achieve a faster program.

 Each program implemented the FFT algorithm differently. The MATLAB code

used the built-in fft() function. The C code utilized the code from Professor Jerome R.

Breitenbach found in Appendix C. The SRC implementation used the FFT provided by

SRC Computer, Inc. Table 12 shows the timing results of each FFT algorithm. From

these results it can be seen that the SRC implementation was an order of magnitude faster

than either the MATLAB or the C FFT implementation. It can also be seen that the

timing is not dependent on the type of LPI signal.

 34

Table 12. Time Results for the Fast Fourier Transform (FFT).

LPI Signal

MATLAB
FFT1
(sec)

MATLAB
FFT2
(sec)

C FFT
(sec)

SRC FFT
(sec)

FMCW 0.03 0.02 0.08 0.004
Frank Codes 0.03 0.02 0.08 0.004
Costas Codes 0.03 0.02 0.08 0.004

Hybrid Costas Codes 0.03 0.02 0.08 0.004
1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory

using MATLAB 7.4.0 R2007b.

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory
using MATLAB Student Version 7.1.

 It is important to note that timing the code itself added delays into the code at

every step. The intrusion was minimal in the MATLAB code using the tic and toc

functions. However in the C and SRC code an additional library was added, an additional

.c file was included and multiple gettimeofday() commands and other timing

commands were added to the code. These additions and extra calculations must add some

delay to both the C code and the SRC code. The final results and conclusions are found in

the next chapter.

 35

V. RESULTS AND CONCLUSIONS

A. RESULTS

 The timing results in the previous chapter show several important overall results.

These results are summarized below.

 MATLAB Code:

• The MATLAB code performed the slowest when utilizing 3 GHz processor
with 512 megabytes of random access memory using MATLAB 7.4.0
R2007b.

• The MATLAB results were consistent regardless of what signal was
processed.

• The MATLAB results were dependent on the specific computer being used
and what other programs were running in the background. The speed was
impacted by more than several seconds when the computer was processing
several programs. The results are also dependent on the amount of random
access memory available.

C Code:

• The C code performed the fastest.

• The C code results were consistent regardless of what signal was processed.

• The C code could be further optimized past the original line-by-line
translation of the MATLAB code.

• Additional speed could be achieved using compilation options that were not
available in MATLAB.

SRC C Code:

• The SRC C code was approximately six times (or 80%) slower than the
original C code. The SRC results were faster than the MATLAB code using a
3 GHz processor with 512 megabytes of random access memory using
MATLAB 7.4.0 R2007b. The SRC results were comparable to the
MATLAB code using a 1.6 GHz processor with one gigabyte of random
access memory using MATLAB Student Version 7.1.

• The SRC C code results were consistent regardless of what signal was
processed.

• The SRC C code could not use all the compilation options that were used
when the C code (without using the MAP board) was compiled.

 36

• The C and SRC algorithms were compared with the respective FFTs
removed. When the same compiler options were used, the C code took
approximately 7 seconds where the SRC C code took approximately 36
seconds. This comparison utilizes the same code, the same processor, the
same compiler, and the same compiler options. The difference in timing could
not be resolved.

B. CONCLUSIONS

 The Choi-Williams distribution uses a recursive exponential kernel function to

remove cross terms in a time-frequency analysis of a complex signal. While the use of the

kernel reduced cross terms and allows for an improved estimations of signal parameters, it is

also computationally expensive.

 The MATLAB implementation of the code was a straight-forward manipulation

of the Choi-Williams distribution. This allows for an easier initial code generation.

However, the extra tools available in MATLAB which made the coding simpler

(complex numbers, matrix manipulation, etc.) generated overhead that cost the

implementation speed.

 The C code implementation was optimized and used compilation options to make

loop calculations more efficient without affecting the function of the loop itself. This

allowed the C code to be highly efficient and to perform the fastest.

 The SRC C code utilizing the MAP board was extremely efficient in areas of the

code that were implemented on the MAP itself but lost optimization on the sections of

code that were still implemented on the main processor. There are several options to

utilize the speed of the MAP:

• Take additional sections of the main code, like the Choi-Williams kernel, and

process it on the MAP as a separate MC file. This would take a large portion

of the work of the program and parse it out to the faster MAP board.

However, a direct porting of the CWD kernel to the MAP would not be

efficient due to the number of computationally difficult tasks such as division,

square roots, and exponential function that occur in the CWD kernel.

 37

• Investigate alternative coding schemes for the Choi-Williams kernel in the

main program to see if it can be streamlined.

• Investigate alternative memory allocations for the algorithms. Data may be

more efficiently managed using shared memory between the MAP and the

microprocessor verses the common memory or the on board memory of the

MAP.

• Attempt to use the Wigner-Ville distribution which has a kernel of one. This

would eliminate the need for the exponential kernel but increase cross terms in

the final results.

 It is also important to note that the SRC can be programmed in a hardware

language such as VHDL or Verilog. If the CWD algorithm was defined using either of

these methods the inefficiencies caused by the C compiler would be removed. However,

this is no guarantee that the program would perform faster.

 The detection strategy used here is one of three detection strategies that are

currently designed to run concurrently for real-time processing. The SRC-6 can be

tailored to process all three channels simultaneously. The MATLAB software does not

have this feature. Running all three detection strategies on the same computer will have a

large impact on the overall timing of the system.

C. RECOMMENDATIONS FOR FUTURE WORK

 The project of using the SRC-6 as an autonomous LPI detection system should be

continued in future theses. Specifically the following areas should be addressed:

• Investigate alternatives in implementing the Choi-Williams algorithm defined

in this thesis. Review loop reduction techniques and hardware language

implementation. Introduce windowing functions as defined in [1].

• Optimize the use of parallel detection strategies on the SRC-6. With three

possible detection strategies there is a high probability that there will be ways

to combine MAP board functions to optimize MAP board usage. For example

 38

both the Choi-Williams distribution and the cyclostationary analysis method

use an FFT function. This function could be used by both detection strategies.

• The current preprocessing phase of image analysis has only been configured

and tested for the quadrature mirror filtering detection strategy. This phase

must be expanded to include the Choi-Williams Distribution.

• Review the use of the Wigner-Ville distribution in conjunction with the Choi-

Williams distribution to maximize both the speed and the quality of the

results. For a military application such as an radar warning receivers, a less

than optimal result may be sufficient if it means the pilot has more warning

time (i.e. faster results). For an ELINT application it may be more

advantageous to use the Choi-Williams distribution to recover more signal

parameters.

• The classification algorithms must be expanded to include signal

characteristics identified by the Choi-Williams Distribution.

 39

APPENDIX A. LPI SIGNAL GENERATION

There were several signals generated by the LPI Toolbox used in this thesis. Each

signal is described in detail below. Each signal was generated with a signal to noise ratio

of 0 dB. The addition of noise generates more realistic results without overwhelming the

graph.

1) F_1_7_250_20_0.mat: This signal is an FMCW signal with a carrier

frequency of 1 kHz and a modulation frequency (bandwidth) of 250 Hz. It

has a modulation period of 20µs and is sampled at 7 kHz.

2) FR_1_7_4_1_0.mat: This signal is a Frank coded polyphase signal that is

related to frequency modulation and Barker codes. This code has a

frequency of 1 kHz and has four frequency steps. The four steps leads to a

period of 16 ms (four squared). There is one cycle per step and it is

sampled at a rate of 7 kHz.

3) C_1_15_5000_0.mat: This signal is comprised of Costas codes that limit

the amount of interference between frequencies and generate an ideal

unambiguous range and Doppler measurement. The Costas code used was

[3000, 2000, 6000, 4000, 5000, 1000] Hz. Each frequency is on for a

duration of 0.005 seconds and a sampling frequency of 15,057 Hz.

4) FSK_PSK_Costas_15_5_0.mat: This signal is a combination of Frequency

Shift Keying and Phase Shift Keying techniques. This example used a 5-

bit Barker code over the range of each frequency in the Costas sequence

[3000, 2000, 6000, 4000, 5000, 1000] Hz.

More information on the use of the LPI Toolbox and the different LPI signals is given in

[6].

 40

To use these signals in the SRC environment, they were converted to text files using the

following code.

%% %%%%%%%%%%%%%%%%%%%%% FMCW Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat
sig1 = [I Q];
save S:\thesis\Test_signals_txt\F_1_7_250_20_0.txt sig1 -ascii -double

%% %%%%%%%%%%%%%%%%%%%%% Frank Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat
sig2 = [I Q];
save S:\thesis\Test_signals_txt\FR_1_7_4_1_0.txt sig2 -ascii -double

%% %%%%%%%%%%%%%%%%%%% Costas Code %%%%%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat
sig3 = [I Q];
save S:\thesis\Test_signals_txt\C_1_15_5000_0.txt sig3 -ascii -double

%% %%%%%%%%%%%%%%% FSK/PSK Costas Code %%%%%%%%%%%%%%%% %%
load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat
sig4 = [I Q];
save S:\thesis\Test_signals_txt\FSK_PSK_Costas_15_5_0.txt sig4 -ascii
 -double

 41

APPENDIX B. CHOI-WILLIAMS DISTRIBUTION C CODE

A file was generated to contain all the user defined variables. In the case of the C

code there is only one variable. However to change the length of the vector being

calculated only the user file needs to be altered.
/************** userdef.c **************************/
#define PI 3.1415926535897932384626433832795

#define N 512

//#define N 256
//#define N 8

#include <stdio.h>
#include <math.h>
#include <time.h>
#include "fft.c"
#include "userdef.c"
#include "high_prec_time.c"

/******* Choi Williams Distribution Computation ********
**
* N = length of vector (file) Must be an Integer power *
* of two (256 or 512 is recommended). *
* *
* *data = pointer to input data *
* Data must be I and Q data in two respective columns *
* *
* Output vector will be NxN *
* Rows represent change in time *
* Columns represent change in frequency *
**/

int main()
{
 /* Define Variables */
 int i,j,k,r,q,P,L,M,n,a,b;

 struct timeval tottime, stime, etime;
 struct timeval totFFTtime, sFFTtime, eFFTtime;
 struct timeval totCWDtime, sCWDtime, eCWDtime;

 double sigma,tt,W,c,ffttime,time1,time2;
 float Iin[N], Qin[N];

 /* Define Pointers */
 FILE *data;

 double (*temp1)[2], (*temp2)[2];

 42

 double (*IData), (*QData);
 double (*Ishift), (*Qshift);
 double (*IX1), (*QX1);
 double (*IX2), (*QX2);
 double (*Isum), (*Qsum);
 double (*IWV)[N], (*QWV)[N];
 double (*IWVweight)[N-1], (*QWVweight)[N-1];
 double (*Ikern)[N], (*Qkern)[N];
 double (*IDataOut)[N], (*QDataOut)[N];
 double (*mu), (*weight)[N];

/*****************Initialize Variables******************
**/
 k = 1;
 j = 0;
 P = N/2;
 M= (2*P)-1;
 a = -P;
 b = P-1;
 ffttime = 0;

/******************** Sigma ****************************
**
Can use to change the weight of the Choi Williams
distribution. A large sigma will result in a
Wigner-Ville Distribution. */

sigma = 1;

/***************** Allocate memory *********************/
 IData = malloc(N*sizeof(double));
 QData = malloc(N*sizeof(double));

/****************** Open Data **************************
**
Default: Data is stored in a file called
 Test_signals_txt */

 data = fopen("Test_signals_txt/INPUT.txt","r");

 if(data == NULL)
 {
 puts("Error opening file.");
 return(1);
 }

 fscanf(data,"%f", &Iin[0]);
 IData[0] = Iin[0];

 for(i=0; i<((2*N)-1);i++)
 {
 if(i % 2 == 1) /*IData*/
 {
 fscanf(data, "%f", &Iin[k]);
 IData[k] = Iin[k];

 43

 k++;
 }
 else /*QData*/
 {
 fscanf(data,"%f", &Qin[j]);
 QData[j] = Qin[j];
 j++;
 }
 }
/* Close the file */
fclose(data);

/************** Start Time the SRC Code ***************
 The total time will be from this point to the stage *
 right before the output to txt. This is to make as *
 fair a comparison between the SRC code, the C code *
 and the Matlab code. */

 gettimeofday(&stime,NULL);

/***** Compute the Wigner-Ville Distribution ***********
**
The Wigner-Ville Distribution can be used to
computer the Choi-Williams Distribution. The
variables IWV and QWV are the NxN matrix output.

First, the data is shifted.
Second, the data is broken into X1 and X2.
Lastly, the data is recombined into IWV and QWV. */

 /*************** Allocate memory *******************/
 Ishift = malloc(N*sizeof(double));
 Qshift = malloc(N*sizeof(double));
 IX1 = malloc(N*sizeof(double));
 QX1 = malloc(N*sizeof(double));
 IX2 = malloc(N*sizeof(double));
 QX2 = malloc(N*sizeof(double));
 IWV = malloc(N*N*sizeof(double));
 QWV = malloc(N*N*sizeof(double));
 Ikern = malloc(N*N*sizeof(double));
 Qkern = malloc(N*N*sizeof(double));

for(i=a; i<b+1; i++)
 {
/********************* Shift ***************************
 Shift both I and Q */

 if(i>= 0)
 {
 for(k=0; k<i; k++)
 {
 Ishift[k] = 0;
 Qshift[k] = 0;
 }
 for (k=i; k<N; k++)

 44

 {
 Ishift[k] = IData[k-i];
 Qshift[k] = QData[k-i];
 }
 }
 else
 {
 for(k=0; k<N+i; k++)
 {
 Ishift[k] = IData[k-i];
 Qshift[k] = QData[k-i];
 }
 for(k=N+i; k<N; k++)
 {
 Ishift[k] = 0;
 Qshift[k] = 0;
 }
 }
/**************** End Shift ****************************/
/************ Determine X1 and X2 **********************/
 for(k=0; k<P; k++)
 {
 IX1[k] = Ishift[P+k-1];
 QX1[k] = Qshift[P+k-1];
 IX2[k] = Ishift[P-1-k];
 QX2[k] = -Qshift[P-1-k];
 }

 IX1[k] = 0;
 QX1[k] = 0;
 IX2[k] = 0;
 QX2[k] = 0;

 for(k=(P+1); k<N; k++)
 {
 IX1[k] = Ishift[k-P-1];
 QX1[k] = Qshift[k-P-1];
 IX2[k] = Ishift[M+(M-P+1)-k];
 QX2[k] = -Qshift[M+(M-P+1)-k];
 }

/****************** End X1 and X2 **********************/
/******************** Determine WV *********************/
 for (k=0; k<N; k++)
 {
 IWV[i+P][k] = ((IX1[k]*IX2[k])-(QX1[k]*QX2[k]));
 QWV[i+P][k] = -((IX1[k]*QX2[k])+(IX2[k]*QX1[k]));
 }
/********************* End WV **************************/
 }

 /*************** Release memory ********************/
 free(IX2);
 free(QX2);
 free(IX1);

 45

 free(QX1);
 free(Ishift);
 free(Qshift);

/********** End Wigner-Ville Distribution **************
**/
 gettimeofday(&sCWDtime,NULL);
/****** Compute the Choi-Williams Distribution *********
**
The Choi-Williams kernel is a summation of weighted WV
outputs. */

/****************** Determine mu ***********************
 Mu is used for array indexing in determining the
 weighting function. */

 /*************** Allocate memory *******************/
 mu = malloc(N*sizeof(double));

for(k=0; k<N; k++)
 mu[k]=b-k;

/******************** End mu ***************************/
/************* Determine weight ************************
 These nested for loops determine the weighting
 function in the Choi-Williams Distribution. */

 /*************** Allocate memory *******************/
 weight = malloc(N*N*sizeof(double));
 Isum = malloc(N*sizeof(double));
 Qsum = malloc(N*sizeof(double));
 IWVweight = malloc(N*N*sizeof(double));
 QWVweight = malloc(N*N*sizeof(double));

 c = sigma/(4*PI);

for(L=0; L<N; L++)
 {
 for(n=1; n<P; n++)
 {
 for(i=0; i<N; i=i+4)
 {
 W = sqrt(c/(n*n))
 exp((-((mu[i]-(L-P))(mu[i]-(L-P)))*sigma/(4*(n*n))));
 weight[i][n] = W;
 weight[i][N-n] = W;

 W = sqrt(c/(n*n))
 exp((-((mu[i+1]-(L-P))(mu[i+1]-(L-P)))*sigma/(4*(n*n))));
 weight[i+1][n] = W;
 weight[i+1][N-n] = W;

 W = sqrt(c/(n*n))

 46

 exp((-((mu[i+2]-(L-P))(mu[i+2]-(L-P)))*sigma/(4*(n*n))));
 weight[i+2][n] = W;
 weight[i+2][N-n] = W;

 W = sqrt(c/(n*n))
 exp((-((mu[i+3]-(L-P))(mu[i+3]-(L-P)))*sigma/(4*(n*n))));
 weight[i+3][n] = W;
 weight[i+3][N-n] = W;

 } //End i loop
 }//End n loop

 for(j=0; j<N-1; j++) //columns
 {
 Isum[j] = 0;
 Qsum[j] = 0;
 for(k=0; k<N; k++) //rows
 {
 IWVweight[k][j] = weight[k][j+1] * IWV[k][j+1];
 QWVweight[k][j] = weight[k][j+1] * QWV[k][j+1];
 Isum[j] = Isum[j] + IWVweight[k][j];
 Qsum[j] = Qsum[j] + QWVweight[k][j];
 } //End k loop
 } //End j loop

/******************* End weight ************************/
/**************** Determine kernel *********************/

 for(r=0; r<N; r++)
 {
 //printf("L = %i; r = %i; N=%i\n",L,r,N);
 if(r==0)
 {
 Ikern[r][L] = IWV[N-L-1][r];
 Qkern[r][L] = 0;
 }
 else
 {
 Ikern[r][L] = Isum[r-1];
 Qkern[r][L] = -Qsum[r-1];
 }
 }

 } //End L loop

 /*************** Release memory ********************/
 free(IWVweight);
 free(QWVweight);
 free(Isum);
 free(Qsum);
 free(weight);
 free(mu);
 free(IWV);
 free(QWV);

 47

/********** End Choi-Williams Distribution *************/
 gettimeofday(&eCWDtime,NULL);
/***************** Determine FFT ***********************
**
The FFT algorithm is for an Nx1 array so it used in a
loop to calculate the FFT for an NxN array. */

 /*************** Allocate memory *******************
 This is to determine the FFT. */
 temp1 = malloc(2*N*sizeof(double));
 temp2 = malloc(2*N*sizeof(double));
 IDataOut = malloc(N*N*sizeof(double));
 QDataOut = malloc(N*N*sizeof(double));

for (j=0; j<N; j++)
 {
 for (i=0; i<N; i++)
 {
 temp1[i][0] = Ikern[i][j];
 temp1[i][1] = Qkern[i][j];
 }
 gettimeofday(&sFFTtime,NULL);
 fft(N,temp1,temp2);
 gettimeofday(&eFFTtime,NULL);

 tt = timeval_subtract(&totFFTtime, &eFFTtime, &sFFTtime);
 time2 = totFFTtime.tv_sec + totFFTtime.tv_usec*1e-6;
 time1 = time2+ffttime;
 ffttime = time1;

 for (i=0; i<N; i++)
 {
 IDataOut[i][j] = 2*temp2[i][0];
 QDataOut[i][j] = 2*temp2[i][1];
 }
 } // End j loop

 /*************** Release memory ********************/
 free(temp1);
 free(temp2);
 free(Ikern);
 free(Qkern);

/********************** End FFT ************************/
/**************** End Time the C Code ******************
 The total time will be from this point to the stage *
 right before the output to txt. This is to make as *
 fair a comparison between the SRC code, the C code *
 and the Matlab code. */

 gettimeofday(&etime,NULL);
 tt = timeval_subtract(&tottime, &etime, &stime);
printf("Total time was %4.6f sec\n",
 tottime.tv_sec + tottime.tv_usec/1000000.0);

 48

 tt = timeval_subtract(&totCWDtime, &eCWDtime, &sCWDtime);
printf("Total CWD kernel time was %4.6f sec\n",
 totCWDtime.tv_sec + totCWDtime.tv_usec/1000000.0);

printf("Total FFT time was %4.6f sec\n",ffttime);

/**************** Output Data **************************
**
This outputs the final result to a text file called
out.txt that can be pulled into Matlab and graphed. */
 data = fopen("out.txt","w");

if(data == NULL)
 {
 puts("Error creating file.");
 return(1);
 }

for (r=0; r<N; r++)
 {
 for (q=0; q<N-1; q++)
 fprintf(data, "%12f\t", IDataOut[r][q]);
 fprintf(data, "%12f\n", IDataOut[r][q]);
 }

/* Close the file */
fclose(data);

puts("Data saved to out.txt");

/***************** End Output **************************
**/

/***************** Release memory **********************/
free(IData);
free(QData);
free(IDataOut);
free(QDataOut);

return(0);
} // End main

 49

APPENDIX C. FFT.C C CODE

/*--
 fft.c - fast Fourier transform and its inverse (both recursively)
 Copyright (C) 2004, Jerome R. Breitenbach. All rights reserved.

 The author gives permission to anyone to freely copy, distribute, and use
 this file, under the following conditions:
 - No changes are made.
 - No direct commercial advantage is obtained.
 - No liability is attributed to the author for any damages incurred.
 --*/

/**
 * This file defines a C function fft that, by calling another function *
 * fft_rec (also defined), calculates an FFT recursively. Usage: *
 * fft(N, x, X); *
 * Parameters: *
 * N: number of points in FFT (must equal 2^n for some integer n >= 1) *
 * x: pointer to N time-domain samples given in rectangular form (Re x, *
 * Im x) *
 * X: pointer to N frequency-domain samples calculated in rectangular form *
 * (Re X, Im X) *
 * Similarly, a function ifft with the same parameters is defined that *
 * calculates an inverse FFT (IFFT) recursively. Usage: *
 * ifft(N, x, X); *
 * Here, N and X are given, and x is calculated. *
 **/

#include <stdlib.h>
#include <math.h>

/* macros */
#define TWO_PI (6.2831853071795864769252867665590057683943L)

 50

/* function prototypes */
void fft(int N, double (*x)[2], double (*X)[2]);
void fft_rec(int N, int offset, int delta, double (*x)[2], double (*X)[2], double (*XX)[2]);
void ifft(int N, double (*x)[2], double (*X)[2]);

/* FFT */
void fft(int N, double (*x)[2], double (*X)[2])
{
 /* Declare a pointer to scratch space. */
 double (*XX)[2] = malloc(2 * N * sizeof(double));

 /* Calculate FFT by a recursion. */
 fft_rec(N, 0, 1, x, X, XX);

 /* Free memory. */
 free(XX);
}
/* FFT recursion */
void fft_rec(int N, int offset, int delta,
 double (*x)[2], double (*X)[2], double (*XX)[2])
{
 int N2 = N/2; /* half the number of points in FFT */
 int k; /* generic index */
 double cs, sn; /* cosine and sine */
 int k00, k01, k10, k11; /* indices for butterflies */
 double tmp0, tmp1; /* temporary storage */

 if(N != 2) /* Perform recursive step. */
 {
 /* Calculate two (N/2)-point DFT's. */
 fft_rec(N2, offset, 2*delta, x, XX, X);
 fft_rec(N2, offset+delta, 2*delta, x, XX, X);

 /* Combine the two (N/2)-point DFT's into one N-point DFT. */
 for(k=0; k<N2; k++)
 {
 k00 = offset + k*delta; k01 = k00 + N2*delta;

 51

 k10 = offset + 2*k*delta; k11 = k10 + delta;
 cs = cos(TWO_PI*k/(double)N); sn = sin(TWO_PI*k/(double)N);
 tmp0 = cs * XX[k11][0] + sn * XX[k11][1];
 tmp1 = cs * XX[k11][1] - sn * XX[k11][0];
 X[k01][0] = XX[k10][0] - tmp0;
 X[k01][1] = XX[k10][1] - tmp1;
 X[k00][0] = XX[k10][0] + tmp0;
 X[k00][1] = XX[k10][1] + tmp1;
 }
 }
 else /* Perform 2-point DFT. */
 {
 k00 = offset; k01 = k00 + delta;
 X[k01][0] = x[k00][0] - x[k01][0];
 X[k01][1] = x[k00][1] - x[k01][1];
 X[k00][0] = x[k00][0] + x[k01][0];
 X[k00][1] = x[k00][1] + x[k01][1];
 }
}
/* IFFT */
void ifft(int N, double (*x)[2], double (*X)[2])
{
 int N2 = N/2; /* half the number of points in IFFT */
 int i; /* generic index */
 double tmp0, tmp1; /* temporary storage */

 /* Calculate IFFT via reciprocity property of DFT. */
 fft(N, X, x);
 x[0][0] = x[0][0]/N; x[0][1] = x[0][1]/N;
 x[N2][0] = x[N2][0]/N; x[N2][1] = x[N2][1]/N;
 for(i=1; i<N2; i++)
 {
 tmp0 = x[i][0]/N; tmp1 = x[i][1]/N;
 x[i][0] = x[N-i][0]/N; x[i][1] = x[N-i][1]/N;
 x[N-i][0] = tmp0; x[N-i][1] = tmp1;
 }
}

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX D. PLOTTING M CODE

%% %%%%%%%%%%%%%%%%%%%%% mplot.m %%%%%%%%%%%%%%%%%%%%%%%% %%
% This m-file takes the resulting .mat file from LPIT and %
% runs the Choi-Williams Distribution (CWD) on N samples %
% of the file. N must be a power of 2 and is typically 256 %
% or 512. These results are then plotted. %
%%

%clear, clc, close all

%% %%%%%%%%%%%%%%%%%%%% Load File %%%%%%%%%%%%%%%%%%%%%% %%
% Load data file for analysis
%%FMCW F_1_7_250_20_0
%load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat
%fs = 7000;
%axis([0 0.07 500 1500]);

%%%%%% For Testing %%%%%%%%%%%%%%%%%%%%%%%%
%%PSK (Frank) FR_1_7_8_1_0
%load H:\Thesis\Choi\FR_1_7_8_1_0.mat
%fs = 7000;
%axis([0 0.07 500 1500]);
%%%

%%PSK (Frank) FR_1_7_4_1_0
%load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat
%fs = 7000;
%axis([0 0.07 500 1500]);

%%FSK (Costas)C_1_15_5000_0
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat
fs = 15057;
%axis([0 0.033 0 7500]);

%%FSK/PSK FSK_PSK_Costas_15_5_0
%load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat
%fs = 15057;
%axis([0 0.033 0 7500]);

%% %%%%%%%%%%%%%%% Set Up Variables %%%%%%%%%%%%%%%%%%% %%
N = 512;
I = I(1:N);
Q = Q(1:N);
x=(I+j*Q)';
c=length(x);

%% %%%%%%%%%%%%% Set Up for Plot Functions %%%%%%%%%%%%% %%
T=1/fs;
freqp=0:fs/c:fs-fs/c; %% Frequency
freqp=freqp/2;
time=0:T:c*T-T; %% Time

 54

%% %% Run the Choi Williams Distribution Computation %% %%
t1=clock; %% This starts the timer
W = choiwilliams(x);
t2=clock; %% This stops the timer
disp('Total Time')
e = etime(t2, t1)
%% %%%%%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%% %%
%figure(14)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');
%view(90,0)

%figure(15)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');
%view(0,0)

%figure(16)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');

figure(17)
mesh(time,freqp,W); shading interp; box on;
xlabel('Time (s)');
ylabel('Frequency (Hz)');
zlabel('Magnitude (V)');
view(0,90)
% The axis may have to be adjusted based on the LPI signal being
analyized.
axis([0 0.033 0 7500]);

%figure(18)
% This figure is generated using the contour command instead of the
mesh
% command which generates a slightly different graph.
%maxi = max(max(W));
%mini = min(min(W));
%lev = linspace(mini,maxi,65);
%contour(time,freqp,W,lev)
%ylabel('Frequency (Hz)');
%xlabel('Time (s)');
%zlabel('Magnitude (V)');
%axis([0 0.033 0 7500]);

% End M-File

 55

%% %%%%%%%%%%%%%%%%%%%%% cplot.m %%%%%%%%%%%%%%%%%%%%%%%% %%
% This m-file takes the resulting .txt file from the %
% the Choi-Williams Distitribution (CWD) of N samples. %
% The results are then plotted using the mesh and contour %
% functions. %
%%

clear, clc, close all

N=512;
%% %%%%%%%%%%%%%%%%%%%% Load File %%%%%%%%%%%%%%%%%%%%%% %%
% The txt file must be changed for each C code output.

%% FMCW F_1_7_250_20_0
%load -ascii H:\Thesis\Choi\C_output\F_1_7_250_20_0_Cout_512SRC.txt
%fs = 7000;
%W=N*F_1_7_250_20_0_Cout_512SRC;

%% PSK (Frank) FR_1_7_4_1_0
%load -ascii H:\Thesis\Choi\C_output\FR_1_7_4_1_0_Cout_512SRC.txt
%fs = 7000;
%W=N*FR_1_7_4_1_0_Cout_512SRC;

%% FSK (Costas)C_1_15_5000_0
%load -ascii H:\Thesis\Choi\C_output\C_1_15_5000_0_Cout_512SRC.txt
%fs = 15057;
%W=N*C_1_15_5000_0_Cout_512SRC;
%axis([0 0.033 0 7500]);

%% FSK/PSK FSK_PSK_Costas_15_5_0
load -ascii
H:\Thesis\Choi\C_output\FSK_PSK_Costas_15_5_0_Cout_512SRCHW.txt
fs = 15057;
W=N*FSK_PSK_Costas_15_5_0_Cout_512SRCHW;
%axis([0 0.033 0 7500]);

%% %%%%%%%%%%%%% Set Up for Plot Functions %%%%%%%%%%%%% %%
c=length(W);

T=1/fs;
freqp=0:fs/c:fs-fs/c; %% Frequency
freqp=freqp/2;
time=0:T:c*T-T; %% Time

%% %%%%%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%% %%
%figure(14)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');
%view(90,0)

 56

%figure(15)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');
%view(0,0)

%figure(16)
%mesh(time,freqp,W); shading interp;
%xlabel('Time (s)');
%ylabel('Frequency (Hz)');
%zlabel('Magnitude (V)');

figure(17)
mesh(time,freqp,W); shading interp; box on;
xlabel('Time (s)');
ylabel('Frequency (Hz)');
zlabel('Magnitude (V)');
view(0,90)
% The axis may have to be adjusted based on the LPI signal being
analyized.
axis([0 0.033 0 7500]);

%figure(8)
%maxi = max(max(W));
%mini = min(min(W));
%lev = linspace(mini,maxi,65);
%contour(time,freqp,W,lev)
%ylabel('Frequency (Hz)');
%xlabel('Time (s)');
%zlabel('Magnitude (V)');
%title('Contour of CWD')

% End M-File

 57

APPENDIX E. SRC MAIN CODE

All user defined variables were included in a separate file. Only the user defined

file must be altered to change the vector length. Note that N and n2 are paired together.
#define PI 3.1415926535897932384626433832795

#define N 512
#define n2 9

//#define N 256
//#define n2 8

#include <stdio.h>
#include <math.h>
#include <map.h>
#include <time.h>
#include <libmap.h>
#include "userdef.c"
#include "high_prec_time.c"

/******* Choi Williams Distribution Computation ********
**
* N = length of vector (file) Must be an Integer power *
* of two (256 or 512 is recommended). *
* *
* *data = pointer to input data *
* Data must be I and Q data in two respective columns *
* *
* Output vector will be NxN *
* Rows represent change in time *
* Columns represent change in frequency *
**/

void fft_map (float input[],float twiddle[],
 float output[],int n,int frflag,
 int64_t* t_dma, int64_t* t_fwd,
 int64_t* t_call, int map);

int main()
{
 /* Define Variables */
 int i,j,k,r,q,P,L,M,n,a,b,nmap;

 double sigma,W,cn;
 float Iin[N], Qin[N];

 /* Define Pointers */
 FILE *data;

 double (*IData), (*QData);

 58

 double (*Ishift), (*Qshift);
 double (*IX1), (*QX1);
 double (*IX2), (*QX2);
 double (*Isum), (*Qsum);
 double (*IWV)[N], (*QWV)[N];
 double (*IWVweight)[N-1], (*QWVweight)[N-1];
 double (*Ikern)[N], (*Qkern)[N];
 double (*IDataOut)[N], (*QDataOut)[N];
 double (*mu), (*weight)[N];

/******************* FFT Variables ********************
 These variables are only used for the FFT. */

int frflag, nbytes, npoint;
float *twiddle;
float (*tempin), (*tempout);
double rad;

/***************** Timing Variables *******************
 These variables are only used for timing. */

 struct timeval tottime, stime, etime;
 struct timeval totffttime, sffttime, effttime;

 float tt,ffttime,time1,time2;

 int64_t t_dma, t_fwd, t_call;
 float ft_dma, ft_fwd, ft_call, ftot_dma, ftot_fwd, ftot_call;

 ffttime = 0;
 ftot_dma = 0;
 ftot_fwd = 0;
 ftot_call = 0;

/**************** Initialize Variables *****************
**/
 k = 1;
 j = 0;
 P = N/2;
 M = (2*P)-1;
 a = -P;
 b = P-1;

/******************** Sigma ****************************
**
Can use to change the weight of the Choi Williams
distribution. A large sigma will result in a
Wigner-Ville Distribution. */

sigma = 1;

/***************** Allocate memory *********************/
 IData = Cache_Aligned_Allocate(N*sizeof(double));
 QData = Cache_Aligned_Allocate(N*sizeof(double));

 59

/****************** Open Data **************************
**
Default: Data is stored in a file called
 Test_signals_txt */

 data = fopen("Test_signals_txt/INPUT.txt","r");

 if(data == NULL)
 {
 puts("Error opening file.");
 return(1);
 }
 fscanf(data,"%f", &Iin[0]);
 IData[0] = Iin[0];

 for(i=0; i<((2*N)-1);i++)
 {
 if(i % 2 == 1) /*Odd data is QData*/
 {
 fscanf(data, "%f", &Iin[k]);
 IData[k] = Iin[k];
 k++;
 }
 else
 {
 fscanf(data,"%f", &Qin[j]);
 QData[j] = Qin[j];
 j++;
 }
 }

/* Close the file */
fclose(data);

/************** Start Time the SRC Code ***************
 The total time will be from this point to the stage *
 right before the output to txt. This is to make as *
 fair a comparison between the SRC code, the C code *
 and the MATLAB code. */

 gettimeofday(&stime,NULL);

/***** Compute the Wigner-Ville Distribution ***********
**
The Wigner-Ville Distribution can be used to
computer the Choi-Williams Distribution. The
variables IWV and QWV are the NxN matrix output.

First, the data is shifted.
Second, the data is broken into X1 and X2.
Lastly, the data is recombined into IWV and QWV. */

 /*************** Allocate memory *******************/
 Ishift = Cache_Aligned_Allocate(N*sizeof(double));
 Qshift = Cache_Aligned_Allocate(N*sizeof(double));

 60

 IX1 = Cache_Aligned_Allocate(N*sizeof(double));
 QX1 = Cache_Aligned_Allocate(N*sizeof(double));
 IX2 = Cache_Aligned_Allocate(N*sizeof(double));
 QX2 = Cache_Aligned_Allocate(N*sizeof(double));
 IWV = Cache_Aligned_Allocate(N*N*sizeof(double));
 QWV = Cache_Aligned_Allocate(N*N*sizeof(double));
 Ikern = Cache_Aligned_Allocate(N*N*sizeof(double));
 Qkern = Cache_Aligned_Allocate(N*N*sizeof(double));

for(i=a; i<b+1; i++)
 {
/********************* Shift ***************************
 Shift both I and Q */

 if(i>= 0)
 {
 for(k=0; k<i; k++)
 {
 Ishift[k] = 0;
 Qshift[k] = 0;
 }
 for (k=i; k<N; k++)
 {
 Ishift[k] = IData[k-i];
 Qshift[k] = QData[k-i];
 }
 }
 else
 {
 for(k=0; k<N+i; k++)
 {
 Ishift[k] = IData[k-i];
 Qshift[k] = QData[k-i];
 }
 for(k=N+i; k<N; k++)
 {
 Ishift[k] = 0;
 Qshift[k] = 0;
 }
 }
/**************** End Shift ****************************/
/************ Determine X1 and X2 **********************/
 for(k=0; k<P; k++)
 {
 IX1[k] = Ishift[P+k-1];
 QX1[k] = Qshift[P+k-1];
 IX2[k] = Ishift[P-1-k];
 QX2[k] = -Qshift[P-1-k];
 }

 IX1[k] = 0;
 QX1[k] = 0;
 IX2[k] = 0;
 QX2[k] = 0;

 61

 for(k=(P+1); k<N; k++)
 {
 IX1[k] = Ishift[k-P-1];
 QX1[k] = Qshift[k-P-1];
 IX2[k] = Ishift[M+(M-P+1)-k];
 QX2[k] = -Qshift[M+(M-P+1)-k];
 }

/****************** End X1 and X2 **********************/
/******************** Determine WV *********************/
 for (k=0; k<N; k++)
 {
 IWV[i+P][k] = ((IX1[k]*IX2[k])-(QX1[k]*QX2[k]));
 QWV[i+P][k] = -((IX1[k]*QX2[k])+(IX2[k]*QX1[k]));
 }

/********************* End WV **************************/
 }

 /*************** Release memory ********************/
 free(IX2);
 free(QX2);
 free(IX1);
 free(QX1);
 free(Ishift);
 free(Qshift);

/********** End Wigner-Ville Distribution **************/
/****** Compute the Choi-Williams Distribution *********
**
The Choi-Williams kernel is a summation of weighted WV
outputs. */

/****************** Determine mu ***********************
 Mu is used for array indexing in determining the
 weighting function. */

 /*************** Allocate memory *******************/
 mu = Cache_Aligned_Allocate(N*sizeof(double));

for(k=0; k<N; k++)
 mu[k]=b-k;

/******************** End mu ***************************/
/************* Determine weight ************************
 These nested for loops determine the weighting
 function in the Choi-Williams Distribution. */

 /*************** Allocate memory *******************/
 weight = Cache_Aligned_Allocate(N*N*sizeof(double));
 Isum = Cache_Aligned_Allocate(N*sizeof(double));
 Qsum = Cache_Aligned_Allocate(N*sizeof(double));
 IWVweight = Cache_Aligned_Allocate(N*N*sizeof(double));
 QWVweight = Cache_Aligned_Allocate(N*N*sizeof(double));

 62

 cn = sigma/(4*PI);

 for(L=0; L<N; L++)
 {
 for(n=1; n<P; n++)
 {
 for(i=0; i<N; i=i+4)
 {
 W = sqrt(cn/(n*n))
 exp((-((mu[i]-(L-P))(mu[i]-(L-P)))*sigma/(4*(n*n))));
 weight[i][n] = W;
 weight[i][N-n] = W;

 W = sqrt(cn/(n*n))
 exp((-((mu[i+1]-(L-P))(mu[i+1]-(L-P)))*sigma/(4*(n*n))));
 weight[i+1][n] = W;
 weight[i+1][N-n] = W;

 W = sqrt(cn/(n*n))
 exp((-((mu[i+2]-(L-P))(mu[i+2]-(L-P)))*sigma/(4*(n*n))));
 weight[i+2][n] = W;
 weight[i+2][N-n] = W;

 W = sqrt(cn/(n*n))
 exp((-((mu[i+3]-(L-P))(mu[i+3]-(L-P)))*sigma/(4*(n*n))));
 weight[i+3][n] = W;
 weight[i+3][N-n] = W;
 } //End i loop
 }//End n loop

 for(j=0; j<N-1; j++) //columns
 {
 Isum[j] = 0;
 Qsum[j] = 0;
 for(k=0; k<N; k++)//rows
 {
 IWVweight[k][j] = weight[k][j+1] * IWV[k][j+1];
 QWVweight[k][j] = weight[k][j+1] * QWV[k][j+1];
 Isum[j] = Isum[j] + IWVweight[k][j];
 Qsum[j] = Qsum[j] + QWVweight[k][j];
 } //End k loop
 } //End j loop

/******************* End weight ************************/
/**************** Determine kernel *********************/

 for(r=0; r<N; r++)
 {
 //printf("L = %i; r = %i; N=%i\n",L,r,N);
 if(r==0)
 {
 Ikern[r][L] = IWV[N-L-1][r];
 Qkern[r][L] = 0;
 }
 else

 63

 {
 Ikern[r][L] = Isum[r-1];
 Qkern[r][L] = -Qsum[r-1];
 }
 }

 } //End L loop

 /*************** Release memory ********************/
 free(IWVweight);
 free(QWVweight);
 free(Isum);
 free(Qsum);
 free(weight);
 free(mu);
 free(IWV);
 free(QWV);

/********** End Choi-Williams Distribution *************/
/***************** Determine FFT ***********************
**
The FFT algorithm is for an Nx1 array so it used in a
loop to calculate the FFT for an NxN array. */

 /*************** Allocate memory *******************/
 frflag = 1; //does an FFT (vs. an IFFT)
 npoint = 1 << n2;
 nbytes = npoint*8;

 tempin = (float *)Cache_Aligned_Allocate(nbytes);
 tempout = (float *)Cache_Aligned_Allocate(nbytes);
 IDataOut = Cache_Aligned_Allocate(N*N*sizeof(double));
 QDataOut = Cache_Aligned_Allocate(N*N*sizeof(double));

/*************** Build Twiddle Table *******************
This table is used in the FFT. */

 nbytes = npoint*4;
 twiddle = (float *)Cache_Aligned_Allocate(nbytes);

 i=0;
 for(j=0; j< npoint/2; j++)
 {
 rad = 2.0*PI*((double)j/(double)npoint);
 twiddle[i] = cos(rad);
 twiddle[i+1] = -sin(rad);
 i+=2;
 }

/**************** End Twiddle Table ********************/
/******************* Allocate MAP **********************
This is to allocate the MAP. */

nmap = 1;
if (map_allocate (nmap))

 64

 {
 fprintf (stdout, "Map allocation falied.\n");
 exit(1);
 }
nmap = 0;

/**************** End Allocate MAP *********************/
for (j=0; j<N; j++)
 {

/*************** Arrange Data for FFT ******************
 The data needs to be in [i,q,i,q,etc.] format. */
 k= 0;
 for(i=0;i<N;i++)
 {
 tempin[k] = Ikern[i][j];
 tempin[k+1] = Qkern[i][j];
 k+=2;
 }

/**************** Perform FFT Algorithm ****************/

 gettimeofday(&sffttime,NULL);

 fft_map(tempin, twiddle, tempout, n2, frflag,
 &t_dma, &t_fwd, &t_call, nmap);

 gettimeofday(&effttime,NULL);

 tt = timeval_subtract(&totffttime, &effttime, &sffttime);
 time2 = totffttime.tv_sec + totffttime.tv_usec*1e-6;
 time1 = time2+ffttime;
 ffttime = time1;

 ft_dma = t_dma *1e-8;
 ft_fwd = t_fwd *1e-8;
 ft_call = t_call *1e-8;
 ftot_dma = ftot_dma + ft_dma;
 ftot_fwd = ftot_fwd + ft_fwd;
 ftot_call = ftot_call + ft_call;

/************* Arrange Data for Output *****************
 The data needs to be in N X N format. */
 k=0;
 for (i=0; i<N; i++)
 {
 IDataOut[i][j] = 2*tempout[k];
 QDataOut[i][j] = 2*tempout[k+1];
 k+=2;
 }
 } // End j loop

/********************* Free MAP ************************
 This is to free the MAP. */
nmap = 1;

 65

if (map_free (nmap))
 {
 fprintf (stdout, "Map deallocation falied.\n");
 exit(1);
 }

/****************** End Free MAP ***********************/
/***************** Release memory **********************/
 free(tempin);
 free(tempout);
 free(Ikern);
 free(Qkern);

/********************** End FFT ************************/
/*************** End Time the SRC Code *****************
 The total time will be from this point to the stage *
 right before the output to txt. This is to make as *
 fair a comparison between the SRC code, the C code *
 and the MATLAB code. */

 gettimeofday(&etime, NULL);
 tt = timeval_subtract(&tottime, &etime, &stime);
 time1 = tottime.tv_sec+ tottime.tv_usec*1e-6;

 printf("Total SRC time = %10.8f seconds.\n", time1);
 printf("Total MAP time = %10.8f seconds \n", ftot_call);
 printf(" DMA time = %10.8f seconds \n", ftot_dma);
 printf(" FFT time = %10.8f seconds \n", ftot_fwd);
 printf(" Call Time = %10.8f seconds.\n", ffttime - ftot_call);

 printf("Total time excluding data loads was %4.6f seconds.\n", time1 -
(ffttime-ftot_call));

/**************** Output Data **************************
**
This outputs the final result to a text file called
out.txt that can be pulled into MATLAB and graphed. */
 data = fopen("out.txt","w");

if(data == NULL)
 {
 puts("Error creating file.");
 return(1);
 }
for (r=0; r<N; r++)
 {
 for (q=0; q<N-1; q++)
 fprintf(data, "%12f\t", IDataOut[r][q]);
 fprintf(data, "%12f\n", IDataOut[r][q]);
 }

/* Close the file */
fclose(data);

puts("Data saved to out.txt");

 66

/***************** End Output **************************
**/

/***************** Release memory **********************/
free(IData);
free(QData);
free(IDataOut);
free(QDataOut);

return(0);
}

 67

APPENDIX F. MAP ROUTINE .MC CODE

#include <libmap.h>
void cfft_fp32(int n, int inv, int64_t a_in, int64_t b_in,
 int64_t c_in, int64_t d_in, int sig_valid,
 int64_t e_in, int64_t f_in, int twid_valid,
 int starting, int64_t *a_out, int64_t *b_out,
 int64_t *c_out, int64_t *d_out,
 int *data_valid_out, int *xfrm_addr_out);

void fft_map(float input[], float twiddle[], float output[],
 int n, int frflag,int64_t* t_dma, int64_t* t_fwd,
 int64_t* t_call, int map)
{
 int i, starting, inv, loop, npoint;
 int nbytes, cm_loc, obm_loc;
 int64_t t0, t1, t2, t3, t4;

int inidx, outidx, outctr, twididx, sig_len, valid_in, valid_out;
 int xfrm_addr_out;
int64_t a_in, b_in, c_in, d_in, e_in, f_in, a_out, b_out, c_out,
d_out;

 /* input and output */
 OBM_BANK_A (a, int64_t, MAX_OBM_SIZE)
 OBM_BANK_B (b, int64_t, MAX_OBM_SIZE)
 OBM_BANK_C (c, int64_t, MAX_OBM_SIZE)
 OBM_BANK_D (d, int64_t, MAX_OBM_SIZE)
 /* twiddle table */
 OBM_BANK_E (e, int64_t, MAX_OBM_SIZE)
 OBM_BANK_F (f, int64_t, MAX_OBM_SIZE)

 /* start MAP timing */
 start_timer();
 read_timer(&t0);

 /* move twiddle table */
 npoint = 1 << n;
 nbytes = npoint*4;
 DMA_CPU(CM2OBM,e, MAP_OBM_stripe(1,"E,F"), twiddle, 1, nbytes, 0);
 wait_DMA(0);

 /* move input data */
 nbytes = npoint*8;
 obm_loc = 0;
 cm_loc = 0;
DMA_CPU(CM2OBM, &a[obm_loc], MAP_OBM_stripe(1,"A,B,C,D"),
 &input[cm_loc], 1, nbytes, 0);
 wait_DMA(0);
 read_timer(&t1);

 /* do fft */
 inv = 0;

 68

 sig_len = npoint/4;
 for (loop=0; loop < frflag; ++loop) {
 inidx = 0;
 outidx = 0;
 outctr = 0;
 starting = 1;
#pragma loop noloop_dep
#pragma loop noldst_clsh
 do {
 valid_in = (inidx < sig_len) ? 1 : 0;

 a_in = a[inidx];
 b_in = b[inidx];
 c_in = c[inidx];
 d_in = d[inidx];
 e_in = e[inidx];
 f_in = f[inidx];

 ++inidx;

cfft_fp32 (n, inv, a_in, b_in, c_in, d_in, valid_in,

 e_in, f_in, valid_in, starting, &a_out,
 &b_out, &c_out, &d_out, &valid_out, &outidx);

 if (valid_out) {
 a[outidx] = a_out;
 b[outidx] = b_out;
 c[outidx] = c_out;
 d[outidx] = d_out;
 }
 cg_accum_add_32_np(1, valid_out, 0, starting,
 &outctr);
 starting = 0;
 } while (outctr < sig_len);
 if (loop == 0) {
 inv = 1;
 read_timer(&t2);
 }
 }
 read_timer(&t3);

 /* move output data */
 nbytes = npoint*8;
 obm_loc = 0;
 cm_loc = 0;
 DMA_CPU(OBM2CM, &a[obm_loc], MAP_OBM_stripe(1,"A,B,C,D"),
&output[cm_loc], 1, nbytes, 0);
 wait_DMA(0);
 read_timer(&t4);

 *t_dma = (t1 - t0) + (t4 - t3);
 *t_fwd = t2 - t1;
 *t_call = t4 - t0;
}

 69

APPENDIX G. MAKEFILE CODE

User defines FILES, MAPFILES, and BIN here

FILES = choiSRC.c

MAPFILES = fft.mc

BIN = Final_Output

SRC_VERSION = comp
SRC_TARGET = map_e
SRC_FFT_LIB = /opt/SRCCI2.2/fft_lib

Multi chip info provided here
(Leave commented out if not used)

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines
that are to be inlined
#------------------------------------

#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

#MACROS = <directory-name/macro-file>

#MY_BLKBOX = <directory-name/blackbox-file>
#MY_NGO_DIR = <directory-name>
#MY_INFO = <directory-name/info-file>

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE
#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
 # special rounding mode

User supplied MCC and MFTN flags

 70

MY_MCCFLAGS = -log
MY_MFTNFLAGS = -log

User supplied flags for C & Fortran compilers

CC = icc # icc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort # for Fortran or C/Fortran mixed
LD = icc # for C codes

CFLAGS = -O3 –tpp7 –xW -ip
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

VCS simulation settings
(Set as needed, otherwise just leave commented out)

USER_MACROLIBS = $(SRC_FFT_LIB)
PAR_OPTIONS = -t 50

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

 71

APPENDIX H. TIMING CODE

This code was used to generate timing with more time resolution that whole seconds. The

file name had to be included in the main SRC program.

int timeval_subtract (struct timeval *result, struct timeval *x, struct
timeval *y);

/* Subtract the `struct timeval' values X and Y,
 storing the result in RESULT.
 Return 1 if the difference is negative, otherwise 0. */

 int
 timeval_subtract (result, x, y)
 struct timeval *result, *x, *y;
 {
 /* Perform the carry for the later subtraction by updating y. */
 if (x->tv_usec < y->tv_usec) {
 int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
 y->tv_usec -= 1000000 * nsec;
 y->tv_sec += nsec;
 }
 if (x->tv_usec - y->tv_usec > 1000000) {
 int nsec = (x->tv_usec - y->tv_usec) / 1000000;
 y->tv_usec += 1000000 * nsec;
 y->tv_sec -= nsec;
 }

 /* Compute the time remaining to wait.
 tv_usec is certainly positive. */
 result->tv_sec = x->tv_sec - y->tv_sec;
 result->tv_usec = x->tv_usec - y->tv_usec;

 /* Return 1 if result is negative. */
 return x->tv_sec < y->tv_sec;
 }

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

APPENDIX I. TIME TRIALS

 FMCW
 MATLAB Code1 MATLAB Code2 C Code

Trials
Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

FFT
(sec)

CWD Kernel
(sec)

1 42.135000 33.375445 0.032994 33.875000 27.220885 0.021414 6.808524 0.080723 6.619582
2 42.931000 34.054506 0.033048 33.829000 27.249300 0.021069 6.825237 0.081218 6.635985
3 42.010000 33.249822 0.034361 33.937000 27.271555 0.021729 6.844558 0.084141 6.651393
4 41.900000 33.164924 0.033571 34.078000 27.493605 0.021720 6.800048 0.080538 6.611869
5 41.978000 33.271557 0.032987 33.890000 27.292776 0.020370 6.879942 0.080919 6.690270
6 42.666000 33.748402 0.033775 33.922000 27.243836 0.019518 6.856262 0.080819 6.667106
7 43.104000 34.183792 0.032832 34.579000 27.878681 0.026133 6.807355 0.080926 6.617987
8 43.401000 34.476949 0.033467 34.234000 27.504892 0.021777 6.882586 0.080646 6.693875
9 43.291000 34.353970 0.034650 34.156000 27.482425 0.020707 6.850605 0.080853 6.661507
10 42.150000 33.368591 0.032983 34.188000 27.491442 0.021798 6.823736 0.080805 6.634692
11 42.088000 33.319626 0.033798 33.844000 27.205099 0.021059 6.881128 0.081181 6.691346
12 42.150000 33.375786 0.032994 33.953000 27.345540 0.021920 6.863357 0.080828 6.674034
13 42.103000 33.342221 0.033278 33.860000 27.228194 0.021159 6.887703 0.081034 6.698063
14 42.103000 33.346012 0.032654 33.937000 27.316089 0.021754 6.870801 0.081149 6.681285
15 42.197000 33.412101 0.033251 34.375000 27.663710 0.021993 6.860159 0.082067 6.669467
16 42.182000 33.382078 0.033812 34.500000 27.737586 0.022044 6.847492 0.081104 6.657776
17 42.166000 33.377174 0.033267 33.937000 27.250251 0.022059 6.853079 0.080427 6.664381
18 42.166000 33.400553 0.034492 34.047000 27.350141 0.021588 6.834894 0.081031 6.645633
19 42.166000 33.400032 0.033077 33.984000 27.329706 0.021966 6.883038 0.081108 6.693102
20 42.275000 33.510122 0.034383 34.438000 27.492956 0.021777 6.885325 0.079861 6.697062

Total 42.36 33.56 0.03 34.08 27.40 0.02 6.85 0.08 6.66
All timing was done in seconds.
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static

 74

 FMCW
 SRC Code
Trials Total Total* MAP Time DMA time FFT time Call Time uP Time

1 39.539112 39.335979 0.03088881 0.02640878 0.00441859 0.20313405 39.30508923
2 36.850487 36.647186 0.02943201 0.02495195 0.00441859 0.20329989 36.61775486
3 37.895901 37.682663 0.03158952 0.02710949 0.00441859 0.21323718 37.65107403
4 37.156990 36.913876 0.02748343 0.02300341 0.00441859 0.24311545 36.88639117
5 36.410980 36.200962 0.02978616 0.02530614 0.00441859 0.21001655 36.17117751
6 36.181431 35.977699 0.02488480 0.02040478 0.00441859 0.20373017 35.95281585
7 36.245834 36.042522 0.02501928 0.02053926 0.00441859 0.20331076 36.01750431
8 36.527813 36.324909 0.03044737 0.02596732 0.00441859 0.20290345 36.29446214
9 36.311993 36.106174 0.02939976 0.02491973 0.00441859 0.20581640 36.07677649

10 36.065289 35.860901 0.02539677 0.02091678 0.00441859 0.20438816 35.83550361
11 36.206989 36.004547 0.02463551 0.02015550 0.00441859 0.20244157 35.97991221
12 36.407448 36.199394 0.02469767 0.02021767 0.00441859 0.20805340 36.17469674
13 36.246040 36.031265 0.03049769 0.02601764 0.00441859 0.21477588 36.00076677
14 36.433971 36.222206 0.02617408 0.02169408 0.00441859 0.21176679 36.19603054
15 36.422344 36.214184 0.02680014 0.02232016 0.00441859 0.20816153 36.18738254
16 36.508163 36.298981 0.02438374 0.01990375 0.00441859 0.20918222 36.27459749
17 36.360844 36.156540 0.02582351 0.02134350 0.00441859 0.20430477 36.13071538
18 36.495571 36.292130 0.02489622 0.02041622 0.00441859 0.20344077 36.26723415
19 36.250816 36.046371 0.03016247 0.02568245 0.00441859 0.20444332 36.01621056
20 36.344505 36.128628 0.03166118 0.02718118 0.00441859 0.21587856 36.09696557

Total 36.64 36.43 0.028 0.023 0.004 0.209 36.407
All timing was done in seconds.
* Note: The time to load data to the MAP was removed.
MAP Time: Time spent on the MAP
DMA Time: Time spend moving data to and from the MAP
FFT Time: Time spent performing the FFT
SRC*: SRC Time - DMA Time - Call Time
uP Time: SRC Code - MAP Time - Call Time
SRC CFLAGS = -O3 -tpp7 -xW –ip

 75

 Frank Code
 MATLAB Code1 MATLAB Code2 C Code

Trials
Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

FFT
(sec)

CWD Kernel
(sec)

1 42.369000 33.365577 0.033414 34.000000 27.315711 0.021717 6.844141 0.080820 6.654797
2 42.733000 33.646276 0.049887 34.250000 27.513110 0.021823 6.834130 0.080920 6.645036
3 42.233000 33.578743 0.032802 33.906000 27.223674 0.021586 6.843999 0.081263 6.654071
4 42.296000 33.559779 0.033113 34.515000 27.799471 0.022082 6.845453 0.081297 6.655820
5 42.328000 33.584434 0.032322 34.422000 27.673472 0.021852 6.846738 0.080967 6.657224
6 42.344000 33.578885 0.033099 34.234000 27.379740 0.021882 6.853528 0.080616 6.664700
7 42.390000 33.642125 0.033022 34.422000 27.467568 0.020859 6.881011 0.080962 6.690899
8 42.343000 33.585125 0.033156 33.937000 27.303731 0.021937 6.891828 0.083358 6.699862
9 42.359000 33.583179 0.032531 35.328000 28.473590 0.021335 6.810437 0.080880 6.621057
10 42.328000 33.589742 0.032901 34.031000 27.338336 0.020316 6.839076 0.081477 6.649448
11 42.358000 33.604350 0.032938 34.109000 27.345321 0.020727 6.823902 0.081002 6.634650
12 42.312000 33.529369 0.033173 34.094000 27.371485 0.022010 6.890841 0.082058 6.700006
13 42.374000 33.586357 0.032749 34.156000 27.354829 0.021732 6.894169 0.081091 6.704625
14 42.296000 33.535529 0.033226 34.297000 27.522333 0.021299 6.883250 0.080872 6.693655
15 42.343000 33.588860 0.032896 34.188000 27.434642 0.021678 6.804506 0.080463 6.616567
16 42.390000 33.587745 0.032973 34.172000 27.465290 0.021410 6.865628 0.080768 6.675120
17 42.375000 33.606989 0.032852 34.734000 28.018492 0.021692 6.837842 0.081170 6.648247
18 42.406000 33.629493 0.032921 34.141000 27.426722 0.021726 6.832497 0.080994 6.642770
19 42.453000 33.663165 0.034229 34.188000 27.476351 0.020960 6.824741 0.080735 6.636025
20 42.484000 33.711542 0.035017 34.125000 27.417211 0.020435 6.866777 0.080756 6.677563

Total 42.38 33.59 0.03 34.26 27.52 0.02 6.85 0.08 6.66
All timing was done in seconds.
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static

 76

 Frank Code
 SRC Code
Trials Total Total* MAP Time DMA time FFT time Call Time uP Time

1 36.037533 35.824894 0.02494614 0.02046615 0.00441859 0.21264020 35.79994647
2 36.402012 36.199043 0.03142209 0.02694206 0.00441859 0.20296672 36.16762306
3 36.706581 36.503510 0.03133943 0.02685943 0.00441859 0.20307326 36.47216843
4 36.627396 36.425247 0.03045193 0.02597190 0.00441859 0.20214872 36.39479498
5 36.634857 36.431126 0.02475110 0.02027111 0.00441859 0.20373204 36.40637404
6 36.534679 36.328270 0.02442199 0.01994198 0.00441859 0.20641008 36.30384734
7 36.488415 36.279484 0.02540287 0.02092286 0.00441859 0.20892985 36.25408204
8 36.678787 36.473137 0.02586151 0.02138151 0.00441859 0.20565060 36.44727512
9 36.692760 36.487473 0.02592983 0.02144982 0.00441859 0.20528859 36.46154205
10 36.381931 36.172554 0.02545808 0.02097806 0.00441859 0.20937862 36.14709460
11 36.340466 36.135387 0.03014208 0.02566205 0.00441859 0.20507777 36.10524570
12 36.525745 36.317646 0.02453365 0.02005367 0.00441859 0.20809847 36.29311327
13 36.864136 36.660721 0.02454734 0.02006735 0.00441859 0.20341401 36.63617439
14 36.635117 36.430798 0.02939719 0.02491719 0.00441859 0.20431866 36.40140073
15 36.602978 36.397655 0.03144057 0.02696052 0.00441859 0.20532106 36.36621612
16 36.709908 36.502457 0.02578093 0.02130095 0.00441859 0.20745090 36.47667570
17 36.541664 36.333710 0.02741338 0.02293332 0.00441859 0.20795348 36.30629726
18 36.556164 36.351639 0.02975448 0.02527445 0.00441859 0.20452464 36.32188467
19 36.556137 36.354103 0.02582574 0.02134574 0.00441859 0.20203321 36.32827813
20 36.717102 36.512592 0.03066544 0.02618542 0.00441859 0.20451060 36.48192601

Total 36.56 36.36 0.027 0.023 0.004 0.206 36.329
All timing was done in seconds.
* Note: The time to load data to the MAP was removed.
MAP Time: Time spent on the MAP
DMA Time: Time spend moving data to and from the MAP
FFT Time: Time spent performing the FFT
SRC*: SRC Time - DMA Time - Call Time
uP Time: SRC Code - MAP Time - Call Time
SRC CFLAGS = -O3 -tpp7 -xW –ip

 77

 Costas Code
 MATLAB Code1 MATLAB Code2 C Code

Trials
Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

FFT
(sec)

CWD Kernel
(sec)

1 42.452000 33.644792 0.033099 34.438000 27.800132 0.021022 6.827953 0.080708 6.639722
2 42.531000 33.678851 0.033074 33.937000 27.264355 0.021702 6.820967 0.080823 6.630867
3 42.250000 33.536931 0.033085 33.938000 27.257868 0.020978 6.883820 0.081023 6.694394
4 42.453000 33.709387 0.033097 34.015000 27.363153 0.020963 6.837323 0.080815 6.647776
5 42.390000 33.606385 0.033135 34.031000 27.335227 0.021444 6.896061 0.080945 6.705398
6 42.421000 33.622443 0.032710 34.250000 27.555693 0.022162 6.858750 0.080793 6.668965
7 42.358000 33.569631 0.033214 33.921000 27.272657 0.021287 6.854811 0.081082 6.664936
8 42.453000 33.637314 0.032873 34.578000 27.714712 0.021187 6.878653 0.080922 6.689140
9 42.390000 33.627525 0.033220 34.343000 27.580230 0.021564 6.898957 0.079601 6.710012
10 42.468000 33.708377 0.032968 34.578000 27.799739 0.022156 6.824855 0.080989 6.635727
11 42.436000 33.656550 0.033018 34.344000 27.576596 0.021761 6.879972 0.080951 6.690359
12 42.437000 33.667283 0.032891 34.235000 27.448125 0.021580 6.873613 0.081092 6.683549
13 42.234000 33.481668 0.033241 34.235000 27.441689 0.021730 6.861605 0.080759 6.671818
14 42.515000 33.567334 0.032537 34.407000 27.584517 0.021755 7.201554 0.081226 7.011066
15 42.374000 33.611778 0.032966 34.078000 27.386950 0.021736 6.856291 0.081355 6.666557
16 42.515000 33.672567 0.033127 34.250000 27.566007 0.021869 6.888370 0.081066 6.698781
17 42.281000 33.539797 0.033310 34.609000 27.650112 0.021411 6.845149 0.081538 6.654523
18 42.522000 33.726271 0.033072 34.422000 27.696157 0.021868 6.821400 0.080691 6.632646
19 42.406000 33.624248 0.033099 34.516000 27.721190 0.021892 6.830422 0.080902 6.640982
20 42.453000 33.676700 0.033248 34.921000 28.109629 0.021906 6.830434 0.081015 6.641037

Total 42.42 33.63 0.03 34.30 27.56 0.02 6.87 0.08 6.68
All timing was done in seconds.
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static

 78

 Costas Code
 SRC Code

Trials Total Total* MAP Time DMA time FFT time Call Time uP Time
1 37.302799 37.097576 0.02461905 0.02013903 0.00441859 0.20522486 37.07295531
2 37.591682 37.378971 0.02519199 0.02071199 0.00441859 0.21271212 37.35377832
3 37.805580 37.601227 0.02988138 0.02540133 0.00441859 0.20435169 37.57134707
4 37.659775 37.456326 0.02821761 0.02373756 0.00441859 0.20344919 37.42810798
5 37.777123 37.572552 0.02981857 0.02533853 0.00441859 0.20457046 37.54273347
6 37.613869 37.405632 0.02617390 0.02169391 0.00441859 0.20823532 37.37945949
7 37.630981 37.427681 0.02458823 0.02010822 0.00441859 0.20329888 37.40309434
8 37.178364 36.971706 0.02907945 0.02459940 0.00441859 0.20727301 36.94201134
9 37.433876 37.226604 0.02519191 0.02071190 0.00441859 0.20727301 37.20141112

10 37.695400 37.490940 0.02593238 0.02145240 0.00441859 0.20446043 37.46500743
11 37.118446 36.916069 0.02491966 0.02043967 0.00441859 0.20237710 36.89114959
12 37.146481 36.943340 0.02589822 0.02141822 0.00441859 0.20314148 36.91744086
13 37.324024 37.121887 0.02503816 0.02055814 0.00441859 0.20213591 37.09685013
14 37.094601 36.890461 0.02578623 0.02130623 0.00441859 0.20414092 36.86467353
15 37.266075 37.060028 0.02962512 0.02514508 0.00441859 0.20604864 37.03040137
16 37.498753 37.296822 0.02902935 0.02454934 0.00441859 0.20192952 37.26779372
17 37.341705 37.134121 0.02525445 0.02077448 0.00441859 0.20758465 37.10886622
18 37.637043 37.430561 0.02853816 0.02405814 0.00441859 0.20648067 37.40202417
19 37.301212 37.089687 0.02638647 0.02190646 0.00441859 0.21152438 37.06330146
20 37.297043 37.091888 0.02525511 0.02077512 0.00441859 0.20515467 37.06663307

Total 37.44 37.23 0.027 0.022 0.004 0.206 37.203
All timing was done in seconds.
* Note: The time to load data to the MAP was removed.
MAP Time: Time spent on the MAP
DMA Time: Time spend moving data to and from the MAP
FFT Time: Time spent performing the FFT
SRC*: SRC Time - DMA Time - Call Time
uP Time: SRC Code - MAP Time - Call Time
SRC CFLAGS = -O3 -tpp7 -xW –ip

 79

 Hybrid Costas
 MATLAB Code1 MATLAB Code2 C Code

Trials
Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

CWD Kernel
(sec)

FFT
(sec)

Total
(sec)

FFT
(sec)

CWD Kernel
(sec)

1 42.156000 33.404463 0.032637 34.672000 27.798693 0.021706 6.840940 0.080836 6.651849
2 42.218000 33.483403 0.033034 34.734000 27.659293 0.021984 6.893402 0.080879 6.703728
3 42.452000 33.693234 0.032905 34.532000 27.692799 0.021587 6.874091 0.081097 6.683978
4 42.484000 33.714697 0.033103 35.265000 28.511046 0.022104 6.848965 0.080966 6.659166
5 42.437000 33.649921 0.033156 34.156000 27.422455 0.021961 6.880320 0.080965 6.690943
6 42.375000 33.623231 0.033136 34.063000 27.373033 0.021879 6.827070 0.084321 6.634487
7 42.453000 33.688644 0.033181 34.219000 27.405117 0.021925 6.875590 0.080855 6.685956
8 42.390000 33.636462 0.033875 34.000000 27.316936 0.021688 6.872042 0.081031 6.681623
9 42.421000 33.634448 0.032818 34.312000 27.540350 0.020932 6.808278 0.081140 6.618563
10 42.468000 33.604427 0.032865 34.156000 27.418034 0.021732 6.884420 0.079418 6.696768
11 42.406000 33.650054 0.032896 34.110000 27.398181 0.020651 6.884737 0.081233 6.694547
12 42.343000 33.585685 0.032834 34.234000 27.437805 0.021846 6.889027 0.080972 6.699274
13 42.437000 33.652155 0.033198 34.110000 27.335791 0.021602 6.839795 0.081163 6.650174
14 42.390000 33.643646 0.033176 34.375000 27.530217 0.021734 6.832598 0.080816 6.643556
15 42.859000 34.095596 0.033139 34.079000 27.383975 0.021287 6.863264 0.080584 6.674164
16 42.453000 33.667348 0.033250 34.219000 27.380969 0.020605 6.827325 0.081337 6.637525
17 42.489000 33.704778 0.033240 34.297000 27.497522 0.021914 6.863383 0.081089 6.673473
18 42.520000 33.702544 0.033026 34.188000 27.414738 0.022365 6.830806 0.081098 6.641465
19 42.535000 33.735316 0.032894 34.297000 27.551898 0.020001 6.880188 0.080837 6.691059
20 42.504000 33.705944 0.033742 34.157000 27.415263 0.022090 6.838972 0.081188 6.649432

Total 42.44 33.66 0.03 34.31 27.52 0.02 6.86 0.08 6.67
All timing was done in seconds.
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static

 80

 Hybrid Costas
 SRC Code

Trials Total Total* MAP Time DMA time FFT time Call Time uP Time
1 36.697266 36.494972 0.02494792 0.02046790 0.00441859 0.20229483 36.47002287
2 37.102898 36.895813 0.02508159 0.02060158 0.00441859 0.20708627 36.87072978
3 36.805889 36.603035 0.02528087 0.02080087 0.00441859 0.20285505 36.57775321
4 36.907913 36.702850 0.02946466 0.02498460 0.00441859 0.20506221 36.67338634
5 36.845196 36.640434 0.02999288 0.02551285 0.00441859 0.20476004 36.61044285
6 37.049484 36.847870 0.02509415 0.02061415 0.00441859 0.20161253 36.82277757
7 36.828751 36.625122 0.02487262 0.02039263 0.00441859 0.20363045 36.60024754
8 36.927158 36.715683 0.02516238 0.02068239 0.00441859 0.21147461 36.69052137
9 37.153046 36.946129 0.02602743 0.02154743 0.00441859 0.20691627 36.92010195

10 37.046185 36.843735 0.02458902 0.02010902 0.00441859 0.20244803 36.81914749
11 37.026020 36.821045 0.02583526 0.02135527 0.00441859 0.20497392 36.79521087
12 37.016129 36.811539 0.02581206 0.02133207 0.00441859 0.20459092 36.78572556
13 36.723034 36.519859 0.02839505 0.02391500 0.00441859 0.20317361 36.49146525
14 36.842052 36.638428 0.02563430 0.02115432 0.00441859 0.20362334 36.61279482
15 37.047661 36.841053 0.02642455 0.02194455 0.00441859 0.20660663 36.81462965
16 37.038479 36.829472 0.02475087 0.02027087 0.00441859 0.20900835 36.80471963
17 36.819927 36.610607 0.03055760 0.02607758 0.00441859 0.20932110 36.58004852
18 37.192162 36.977692 0.03139229 0.02691231 0.00441859 0.21446964 36.94629963
19 36.924355 36.720692 0.02849400 0.02401398 0.00441859 0.20366256 36.69219799
20 37.142910 36.942451 0.02458846 0.02010847 0.00441859 0.20045713 36.91786441

Total 36.96 36.75 0.027 0.022 0.004 0.205 36.725
All timing was done in seconds.
* Note: The time to load data to the MAP was removed.
MAP Time: Time spent on the MAP
DMA Time: Time spend moving data to and from the MAP
FFT Time: Time spent performing the FFT
SRC*: SRC Time - DMA Time - Call Time
uP Time: SRC Code - MAP Time - Call Time
SRC CFLAGS = -O3 -tpp7 -xW –ip

 81

LIST OF REFERENCES

[1] H.I. Choi and W. J. Williams, “Improved Time-Frequency Representation of
Multicomponent Signals Using Exponential Kernels,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol.37, no. 6, pp. 862-871, Jun. 1989.

[2] K. M. Stoffell, “Implementation of a Quadrature Mirror Filter Bank on an SRC

Reconfigurable Computer for Real-Time Signal Processing,” M.S. thesis, Dept.
Electrical and Computer Eng., Naval Postgraduate School, Monterey, CA, United
States, 2006.

[3] D. A. Brown, “ELINT Signals Procession on Reconfigurable Computers for

Detection and Classification of LPI Emitters,” M.S. thesis, Dept. Electrical and
Computer Eng., Naval Postgraduate School, Monterey, CA, United States, 2006.

[4] S. P. Bailey, “Neural Network Design on the SRC-6 Reconfigurable Computer,”

M.S. thesis, Dept. Electrical and Computer Eng., Naval Postgraduate School,
Monterey, CA, United States, 2006.

[5] G. J. Upperman, “Implementation of Cyclostationary Spectral Analysis Algorithm

on An SRC Reconfigurable Computer for Real-Time Signal Processing,” M.S.
thesis, Dept. Electrical and Computer Eng., Naval Postgraduate School,
Monterey, CA, United States, 2008.

[6] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar, Artech

House, Inc., Norwood, MA, 2004.

[7] B. Boashash and P.J. Black, “An Efficient Real-Time Implementation of the

Wigner-Ville Distribution,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 35, no. 11, pp. 1611-1618, Nov. 1987.

[8] G. J. Upperman and T. L. O. Upperman, “Choi-Williams Distribution Analysis of
 LPI Radar Waveforms,” EC4680 final paper, Dept. Electrical and Computer Eng.,

Naval Postgraduate School, Monterey, CA, United States, 2007.

[9] D. T. Barry, “Fast Calculation of the Choi-Williams Time-Frequency

Distribution,” IEEE Transactions on Signal Processing, vol. 40, no. 2, pp. 450-
455, Feb. 1992.

[10] J.C. Cardoso, P. J. Fish and M. C. Ruano, “Parallel Implementation of a Choi-

Williams TFD for Doppler Signal Analysis,” Proceedings of the 20th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, vol. 20, no. 3, pp.1490-1492, 1998.

 82

[11] J. R. Breitenbach, “C Programming,” January 2008. [Online]. Available:
http://courseware.ee.calpoly.edu/~jbreiten/C/ [Accessed Jan. 2008].

[12] D. Caliga, and D. P. Barker, “Delivering Acceleration: The

Potential for Increased HPC Application Performance Using Reconfigurable
Logic,” SRC Computers Inc., Colorado Springs, CO, United States, ACM 1-
58113-293-X/01/0011, 2001.

[13] “Series C-H MAP® Processor”, SRC Computers, Inc., Colorado Springs, CO,

United States, 2008.

[14] “SRC CarteTM C Programming Environment v2.v Guide,” SRC Computers, Inc.,

Colorado Springs, CO, United States, SRC-007-18, 2006.

[15] “FFT, 32b Floating Point (Complex), ” SRC Computers, Inc., Colorado Springs,

CO, United States, 2006.

[16] Lucini, B. “ICC fast optimisation strategies,” Linux Format iss. 68, pp.88-91, Jul.

2005.

 83

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Douglas J. Fouts

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Phillip E. Pace

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Peter K. Burke

771 Test Squadron
Edwards, California

7. Jon Huppenthal

SRC Computers, Inc.
Colorado Springs, Colorado

8. David Caliga

SRC Computers, Inc.
Colorado Springs, Colorado

9. Alan Hunsberger

National Security Agency
Ft. Meade Maryland

10. Ted Roberts

Naval Research Laboratory
Code 5720
Washington, D.C.

 84

11. Anthony Tse
Naval Research Laboratory
Code 5720
Washington, D.C.

12. Alfred Di Mattesa

Naval Research Laboratory
Code 5701
Washington, D.C.

13. Peter Craig

Office of Naval Research
Code 312
Arlington, Virginia

14. Jerome Breitenbach

Electrical Engineering Department
Cal Poly State University
San Luis Obispo, California

